Comprehensive Mechanism of CO2 Electroreduction toward Ethylene and Ethanol: The Solvent Effect from Explicit Water–Cu(100) Interface Models

ACS Catalysis ◽  
2021 ◽  
pp. 9688-9701
Author(s):  
Jirapat Santatiwongchai ◽  
Kajornsak Faungnawakij ◽  
Pussana Hirunsit
2017 ◽  
Author(s):  
Belinda Slakman ◽  
Richard West

<div> <div> <div> <p>This article reviews prior work studying reaction kinetics in solution, with the goal of using this information to improve detailed kinetic modeling in the solvent phase. Both experimental and computational methods for calculating reaction rates in liquids are reviewed. Previous studies, which used such methods to determine solvent effects, are then analyzed based on reaction family. Many of these studies correlate kinetic solvent effect with one or more solvent parameters or properties of reacting species, but it is not always possible, and investigations are usually done on too few reactions and solvents to truly generalize. From these studies, we present suggestions on how best to use data to generalize solvent effects for many different reaction types in a high throughput manner. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Anshuman Kumar ◽  
Reinhard Schweitzer-Stenner ◽  
Bryan Wong

In this work, we carry out new time-dependent density functional theory calculations on the cationic tripeptide GAG in implicit and explicit water to determine the transitions that give rise to the observed CD signals of polyproline II and β-strand conformations. Our results reveal a plethora of electronic transitions that are governed by configurational interactions between multiple molecular orbital transitions of comparable energy. We also show that reproducing the CD spectra of polyproline II and β-strand conformations requires the explicit consideration of water molecules. The structure dependence of delocalized occupied orbitals contributes to the experimentally-observed invalidation of Flory’s isolated pair hypothesis.


2019 ◽  
Author(s):  
Anshuman Kumar ◽  
Reinhard Schweitzer-Stenner ◽  
Bryan Wong

In this work, we carry out new time-dependent density functional theory calculations on the cationic tripeptide GAG in implicit and explicit water to determine the transitions that give rise to the observed CD signals of polyproline II and β-strand conformations. Our results reveal a plethora of electronic transitions that are governed by configurational interactions between multiple molecular orbital transitions of comparable energy. We also show that reproducing the CD spectra of polyproline II and β-strand conformations requires the explicit consideration of water molecules. The structure dependence of delocalized occupied orbitals contributes to the experimentally-observed invalidation of Flory’s isolated pair hypothesis.


2012 ◽  
Vol 28 (12) ◽  
pp. 983 ◽  
Author(s):  
Weiwei XU ◽  
Qiang LÜ ◽  
Hongjie WU ◽  
Lijun QUAN
Keyword(s):  

1978 ◽  
Vol 43 (7) ◽  
pp. 1832-1837
Author(s):  
Rostislav Kudláček ◽  
Josef Cabicar ◽  
Milan Buňata
Keyword(s):  

1976 ◽  
Vol 41 (2) ◽  
pp. 430-432
Author(s):  
V. Bekárek ◽  
J. Jirkovský ◽  
K. Pragerová ◽  
J. Socha

1990 ◽  
Vol 55 (3) ◽  
pp. 634-643 ◽  
Author(s):  
Oldřich Pytela

The paper is focused on evaluation of significance of the additive-multiplicative model of extrathermodynamic relations (linear free energy relationships) as compared with the additive model. Application of the method of conjugated deviations to a data matrix describing manifestations of solvent effects in 367 processes in solutions (6 334 data) has shown that introduction of cross-terms into the additive model is statistically significant for a model with two and particularly three parameters. At the same time the calculation has provided a new set of statistical parameters for description of solvent effect with application of the additive-multiplicative model. Compared with an analogous set designated for the additive model, the new parameters show a lower mutual correlation, retaining the same nature of the properties described, i.e. polarity-acidity (PAC parameter), polarity-basicity (PBC), and polarity-polarizability (PPC).


Sign in / Sign up

Export Citation Format

Share Document