Achieving +95% Ammonia Purity by Optimizing the Absorption and Desorption Conditions of Supported Metal Halides

Author(s):  
Daniel J. Hrtus ◽  
Fouzia Hasan Nowrin ◽  
Austin Lomas ◽  
Yanick Fotsa ◽  
Mahdi Malmali
Author(s):  
Ming-Hui Yao ◽  
David J. Smith

The chemical properties of catalysts often depend on the size, shape and structure of the supported metal particles. To characterize these morphological features and relate them to catalysis is one of the main objectives for HREM study of catalysts. However, in plan view imaging, details of the shape and structure of ultra-fine supported particles (<2nm) are often obscured by the overlapping contrast from the support, and supported sub-nanometer particles are sometimes even invisible. Image simulations may help in the interpretation at HREM images of supported particles in particular to extract useful information about the size, shape and structure of the particles. It should also be a useful tool for evaluating the imaging conditions in terms of visibility of supported particles. P. L. Gai et al have studied contrast from metal particles supported on amorphous material using multislice simulations. In order to better understand the influence of a crystalline support on the visibility and apparent morphological features of supported fine particles, we have calculated images of Pt and Re particles supported on TiO2(rutile) in both plan view and profile view.


1999 ◽  
Vol 589 ◽  
Author(s):  
Jingyue Liu

AbstractThe use of a high-brightness field emission gun and novel secondary electron detection systems makes it possible to acquire nanometer-resolution surface images of bulk materials, even at low electron beam voltages. The advantages of low-voltage SEM include enhanced surface sensitivity, reduced sample charging on non-conducting materials, and significantly reduced electron range and interaction volume. High-resolution images formed by collecting the backscattered electron signal can give information about the size and spatial distribution of metal nanoparticles in supported catalysts. Low-voltage XEDS can provide compositional information of bulk samples with enhanced surface sensitivity and significantly improved spatial resolution. High-resolution SEM techniques enhance our ability to detect and, subsequently, analyze the composition of nanoparticles in supported metal catalysts. Applications of high-resolution SEM imaging and microanalysis techniques to the study of industrial supported catalysts are discussed.


2021 ◽  
pp. 2002213
Author(s):  
Yuyu Jing ◽  
Ying Liu ◽  
Mingze Li ◽  
Zhiguo Xia
Keyword(s):  

Author(s):  
Guojun Zhou ◽  
Zhiyang Liu ◽  
Maxim S. Molokeev ◽  
Zewen Xiao ◽  
Zhiguo Xia ◽  
...  

Low-dimensional-networked metal halides are attractive for the screening of emitters applied in solid-state lighting and display, but the lead toxicity and poor stability are obstacles that must be overcome in...


Sign in / Sign up

Export Citation Format

Share Document