Synthesis of near-Infrared Quantum Dots in Cultured Cancer Cells

2013 ◽  
Vol 6 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Lianjiang Tan ◽  
Ajun Wan ◽  
Huili Li
2015 ◽  
Vol 5 (4) ◽  
pp. 1076-1085 ◽  
Author(s):  
Qingke Bai ◽  
Zhenguo Zhao ◽  
Haijing Sui ◽  
Juan Chen ◽  
Xiuhai Xie ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2425-2435 ◽  
Author(s):  
Jing Wang ◽  
Dong Liang ◽  
Zehua Qu ◽  
Ivan M. Kislyakov ◽  
Valery M. Kiselev ◽  
...  

AbstractBiological systems have high transparence to 700–1100-nm near-infrared (NIR) light. Black phosphorus quantum dots (BPQDs) have high optical absorbance in this spectrum. This optical property of BPQDs integrates both diagnostic and therapeutic functions together in an all-in-one processing system in cancer theranostic approaches. In the present study, BPQDs were synthesized and functionalized by targeting moieties (PEG-NH2-FA) and were further loaded with anticancer drugs (doxorubicin) for photodynamic–photothermal–chemotherapy. The precise killing of cancer cells was achieved by linking BPQDs with folate moiety (folic acid), internalizing BPQDs inside cancer cells with folate receptors and NIR triggering, without affecting the receptor-free cells. These in vitro experiments confirm that the agent exhibited an efficient photokilling effect and a light-triggered and heat-induced drug delivery at the precise tumor sites. Furthermore, the nanoplatform has good biocompatibility and effectively obliterates tumors in nude mice, showing no noticeable damages to noncancer tissues. Importantly, this nanoplatform can inhibit tumor growth through visualized synergistic treatment and photoacoustic and photothermal imaging. The present design of versatile nanoplatforms can allow for the adjustment of nanoplatforms for good treatment efficacy and multiplexed imaging, providing an innovation for targeted tumor treatment.


2021 ◽  
Vol 22 (22) ◽  
pp. 12514
Author(s):  
Vuyelwa Ncapayi ◽  
Neethu Ninan ◽  
Thabang C. Lebepe ◽  
Sundararajan Parani ◽  
Aswathy Ravindran Girija ◽  
...  

The link between the microbiome and cancer has led researchers to search for a potential probe for intracellular targeting of bacteria and cancer. Herein, we developed near infrared-emitting ternary AgInSe/ZnS quantum dots (QDs) for dual bacterial and cancer imaging. Briefly, water-soluble AgInSe/ZnS QDs were synthesized in a commercial kitchen pressure cooker. The as-synthesized QDs exhibited a spherical shape with a particle diameter of 4.5 ± 0.5 nm, and they were brightly fluorescent with a photoluminescence maximum at 705 nm. The QDs showed low toxicity against mouse mammary carcinoma (FM3A-Luc), mouse colon carcinoma (C26), malignant fibrous histiocytoma-like (KM-Luc/GFP) and prostate cancer cells, a greater number of accumulations in Staphylococcus aureus, and good cellular uptake in prostate cancer cells. This work is an excellent step towards using ternary QDs for diagnostic and guided therapy for prostate cancer.


2014 ◽  
pp. 1323 ◽  
Author(s):  
Alexander Seifalian ◽  
Sarwat Rizvi ◽  
Sepideh Rouhi ◽  
Shohei Taniguchi ◽  
Shi Yu Yang ◽  
...  

Urology ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. 446-451 ◽  
Author(s):  
Chunmeng Shi ◽  
Ying Zhu ◽  
Zhihui Xie ◽  
Weiping Qian ◽  
Chia-Ling Hsieh ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 18391-18391
Author(s):  
Lianjiang Tan ◽  
Ajun Wan ◽  
Huili Li

2018 ◽  
Vol 13 (1) ◽  
pp. 112-116 ◽  
Author(s):  
Yanling Hu ◽  
Chun Deng ◽  
Yu He ◽  
Yili Ge ◽  
Gongwu Song

2003 ◽  
Vol 773 ◽  
Author(s):  
Xiaohu Gao ◽  
Shuming Nie ◽  
Wallace H. Coulter

AbstractLuminescent quantum dots (QDs) are emerging as a new class of biological labels with unique properties and applications that are not available from traditional organic dyes and fluorescent proteins. Here we report new developments in using semiconductor quantum dots for quantitative imaging and spectroscopy of single cancer cells. We show that both live and fixed cells can be labeled with multicolor QDs, and that single cells can be analyzed by fluorescence imaging and wavelength-resolved spectroscopy. These results raise new possibilities in cancer imaging, molecular profiling, and disease staging.


2016 ◽  
Vol E99.C (3) ◽  
pp. 381-384 ◽  
Author(s):  
Takuma YASUDA ◽  
Nobuhiko OZAKI ◽  
Hiroshi SHIBATA ◽  
Shunsuke OHKOUCHI ◽  
Naoki IKEDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document