Cytochrome c oxidase from rat liver mitochondria: purification and characterization

Biochemistry ◽  
1978 ◽  
Vol 17 (18) ◽  
pp. 3712-3719 ◽  
Author(s):  
Luzia Hochli ◽  
Charles R. Hackenbrock



1993 ◽  
Vol 290 (1) ◽  
pp. 139-144 ◽  
Author(s):  
C E Cooper ◽  
M Markus ◽  
S P Seetulsingh ◽  
J M Wrigglesworth

1. Psychosine (beta-galactosylsphingosine) is the toxic agent in Krabbe's disease (globoid cells leukodystrophy). It inhibits purified bovine heart mitochondrial cytochrome c oxidase; there is a rapid phase of inhibition (complete within 10-15 s) and a slower phase (complete within 10-15 min). Both phases are also seen in rat liver mitochondria. IC50 is about 200 microM psychosine in the purified enzyme and less than 20 microM in mitochondria. Psychosine inhibition is due to binding to cytochrome oxidase, not cytochrome c. 2. Bovine heart submitochondrial particles show inhibition similar to rat liver mitochondria. However, although proteoliposomes containing bovine heart cytochrome oxidase show an identical fast phase, they have no noticeable slow phase of inhibition. Addition of phospholipid liposomes to submitochondrial particles relieved the majority of psychosine inhibition, consistent with the removal of those molecules binding in the slow phase. Psychosine can inhibit cytochrome oxidase molecules facing in either direction in proteoliposomes and submitochondrial particles, suggesting that it can rapidly interact with both sides of a membrane when added externally. 3. At high ionic strength, the presence of psychosine decreases the Vmax. of cytochrome oxidase with little effect on the Km for cytochrome c. This non-competitive inhibition suggests that the psychosine-enzyme complex is kinetically inactive and not labile over the time course of the assay. Psychosine does not inhibit the reduction of haem a or haem a3 by artificial electron donors, but does inhibit the reduction of haem a by cytochrome c.





1972 ◽  
Vol 129 (1) ◽  
pp. 209-218 ◽  
Author(s):  
M. A. Wilson ◽  
J. Cascarano

1. Rat liver mitochondria were separated on the basis of their sedimentation coefficients in an iso-osmotic gradient of Ficoll–sucrose by rate zonal centrifugation. The fractions (33, each of 40ml) were collected in order of decreasing density. Fractions were analysed by spectral analysis to determine any differences in the concentrations of the cytochromes and by enzyme analyses to ascertain any differences in the activities of NADH dehydrogenase, succinate dehydrogenase and α-glycerophosphate dehydrogenase. 2. When plotted as% of the highest specific concentration, the contents of cytochrome a+a3 and cytochrome c+c1 were constant in all fractions but cytochrome b was only 65% of its maximal concentration in fraction 7 and increased with subsequent fractions. As a result, the cytochrome b/cytochrome a+a3 ratio almost doubled between fractions 7 and 25 whereas the cytochrome c+c1/cytochrome a+a3 ratio was unchanged. 3. Expression of the dehydrogenase activities as% of highest specific activity showed the following for fractions 6–26: NADH dehydrogenase activity remained fairly constant in all fractions; succinate dehydrogenase activity was 62% in fraction 6 and increased steadily to its maximum in fraction 18 and then decreased; the activity of α-glycerophosphate dehydrogenase was only 53% in fraction 6 and increased slowly to its peak in fractions 22 and 24. 4. These differences did not result from damaged or fragmented mitochondria or from microsomal contamination. 5. These results demonstrate that isolated liver mitochondria are biochemically heterogeneous. The importance of using a system for separating biochemically different mitochondria in studies of mitochondrial biogenesis is discussed.





1960 ◽  
Vol 38 (1) ◽  
pp. 1-11 ◽  
Author(s):  
W. C. McMurray

The liver carcinogen, dimethylaminoazobenzene, inhibited in vitro the oxidation of a variety of pyridine nucleotide linked substrates of rat liver mitochondria without affecting the process of oxidative phosphorylation. Cytochrome c oxidase activity was not inhibited by the carcinogen, nor was the succinoxidase activity, but the phosphorylation accompanying succinate oxidation was uncoupled. Similar effects were noted with other aminoazobenzene derivatives, but did not appear to be correlated with the ability of the compounds to evoke tumors.The site of the respiratory inhibition by dimethylaminoazobenzene appears to be at the level between reduced pyridine nucleotide and cytochrome c in the respiratory chain. Mitochondrial dehydrogenase activity was not inhibited, while the oxidation of reduced diphosphopyridine nucleotide was markedly decreased. The reduction of the electron acceptor, ferricyanide, by pyridine nucleotide linked substrates was also strongly inhibited but the reduction of tetrazolium compounds was not affected. The latter observations suggest that dimethylaminoazobenzene produces a metabolic block between reduced flavin and cytochrome c in the mitochondrial electron transport system.



Sign in / Sign up

Export Citation Format

Share Document