scholarly journals Quasi-biennial oscillation influence on long-period planetary waves in the Antarctic upper mesosphere

Author(s):  
R. E. Hibbins ◽  
M. J. Jarvis ◽  
E. A. K. Ford
2021 ◽  
Vol 67 (2) ◽  
pp. 177-207
Author(s):  
O. A. Troshichev ◽  
I. P. Gabis ◽  
A. A. Krivolutsky

The review generalizes experimental data on the relationships between the solar activity agents (space weather) and atmosphere constituents. It is shown that high-energy solar protons (SPE) make a powerful impact on photo-chemical processes in the polar areas and, correspondingly, on atmospheric circulation and planetary cloudiness. Variations of the solar UV irradiance modulate the descent rate of the zonal wind in the equatorial stratosphere in the course of quasi-biennial oscillation (QBO), and thus control the total duration (period) of the QBO cycle and, correspondingly, the seasonal ozone depletion in the Antarctic. The geo-effective solar wind impacts on the atmospheric wind system in the entire Southern Polar region, and influences the dynamics of the Southern Oscillation (ENSO).


2020 ◽  
Vol 20 (11) ◽  
pp. 6259-6271
Author(s):  
Emily M. Gordon ◽  
Annika Seppälä ◽  
Johanna Tamminen

Abstract. Observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used to study the effect of energetic particle precipitation (EPP, as proxied by the geomagnetic activity index, Ap) on the Antarctic stratospheric NO2 column in late winter–spring (August–December) during the period from 2005 to 2017. We show that the polar (60–90∘ S) stratospheric NO2 column is significantly correlated with EPP throughout the Antarctic spring, until the breakdown of the polar vortex in November. The strongest correlation takes place during years with the easterly phase of the quasi-biennial oscillation (QBO). The QBO modulation may be a combination of different effects: the QBO is known to influence the amount of the primary NOx source (N2O) via transport from the Equator to the polar region; and the QBO phase also affects polar temperatures, which may provide a link to the amount of denitrification occurring in the polar vortex. We find some support for the latter in an analysis of temperature and HNO3 observations from the Microwave Limb Sounder (MLS, on Aura). Our results suggest that once the background effect of the QBO is accounted for, the NOx produced by EPP significantly contributes to the stratospheric NO2 column at the time and altitudes when the ozone hole is present in the Antarctic stratosphere. Based on our findings, and the known role of NOx as a catalyst for ozone loss, we propose that as chlorine activation continues to decrease in the Antarctic stratosphere, the total EPP-NOx needs be accounted for in predictions of Antarctic ozone recovery.


2005 ◽  
Vol 62 (12) ◽  
pp. 4178-4195 ◽  
Author(s):  
Lucy J. Campbell ◽  
Theodore G. Shepherd

Abstract Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave–driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.


2019 ◽  
Vol 31 ◽  
pp. 21-26
Author(s):  
Igor Shibaev

With the introduction from June 2015 of a new methodology for estimation of Wolf numbers W (or WSN — Wolf sunspot number), this series was corrected from January 1749 to May 2015, i.e. a new version of the series WSN was proposed. The greatest transformation affected the cycles of a statistically reliable part of the series (since, 1849), which was clearly reflected in their amplitude correction and, accordingly, in the long-period component of the series, determining the epoch of maximum/minimum solar activity. The quasi-biennial oscillations available in the solar magnetic field and in the total flux of its radiation also manifest themselves in a number of parameters of the Earth ionosphere and evaluation of their transformation degree is of high significance. This paper compares the characteristics of the frequency interval of the quasi-biennial oscillations of both versions of a series.


Author(s):  
К.А. Диденко ◽  
Т.С. Ермакова ◽  
А.И. Погорельцев ◽  
Е.В. Ракушина

В данной работе показано, как изменялось взаимодействие между тропосферой и стратосферой в последние десятилетия. Также оценено влияние таких явлений, как квазидвухлетнее колебание (КДК) на данное взаимодействие. Для этого было проанализировано распространение планетарных волн в атмосфере с использованием трехмерных потоков волновой активности, показана временная изменчивость потоков и линейный тренд. Кроме того, была оценена реакция тропосферы над Сибирью и Восточной Азией на КДК. The study of the variability of stratosphere-troposphere coupling during the last decades is considered. The influence of such phenomena as quasi-biennial oscillation (QBO) on this interaction was also estimated. For this, the propagation of planetary waves in the atmosphere was analyzed using three-dimensional wave activity fluxes. The temporal variability of fluxes and a linear trend was shown. In addition, the response of the troposphere over Siberia and East Asia to the QBO was assessed.


Sign in / Sign up

Export Citation Format

Share Document