scholarly journals Early Tsunami Detection With Near‐Fault Ocean‐Bottom Pressure Gauge Records Based on the Comparison With Seismic Data

2020 ◽  
Vol 125 (9) ◽  
Author(s):  
Ayumu Mizutani ◽  
Kiyoshi Yomogida ◽  
Yuichiro Tanioka
2020 ◽  
Vol 91 (2A) ◽  
pp. 967-976 ◽  
Author(s):  
Chao An ◽  
S. Shawn Wei ◽  
Chen Cai ◽  
Han Yue

Abstract Vertical records of ocean-bottom seismographs (OBSs) are usually noisy at low frequencies, and one important noise source is the varying ocean-bottom pressure that results from ocean-surface water waves. The relation between the ocean-bottom pressure and the vertical seafloor motion, called the compliance pressure transfer function (PTF), can be derived using background seismic data. During an earthquake, earthquake signals also generate ocean-bottom pressure fluctuations, and the relation between the ocean-bottom pressure and the vertical seafloor motion is named the seismic PTF in this article. Conventionally, we use the whole pressure records and the compliance PTF to remove the compliance noise; the earthquake-induced pressure and the seismic PTF are ignored, which may distort the original signals. In this article, we analyze the data from 24 OBSs with water depth ranging from 107 to 4462 m. We find that for most stations, the investigated frequency range (0.01–0.2 Hz) can be divided into four bands depending on the water depth. In band (I) of lowest frequencies (<0.11, <0.05, and <0.02  Hz for water depth of 107, 1109, and 2650 m, respectively), the vertical seafloor acceleration is composed mostly of pressure compliance noise, which can be removed using the compliance PTF. The compliance PTF is much smaller than the seismic PTF, so distortion of earthquake signals is negligible. In band (II) of higher frequencies (0.11–0.20, 0.05–0.11, and 0.02–0.05 Hz for water depth of 107, 1109, and 2650 m, respectively), the vertical acceleration and ocean-bottom pressure are largely uncorrelated. In bands (III) and (IV) of even higher frequencies (>0.11 and >0.08  Hz for water depth of 1109 and 2650 m, respectively), the compliance noise is negligible, and the ocean-bottom pressure is mostly caused by the seafloor motion. Thus, the compliance can be safely ignored in frequency band (I).


2021 ◽  
Vol 13 (7) ◽  
pp. 1242
Author(s):  
Hakan S. Kutoglu ◽  
Kazimierz Becek

The Mediterranean Ridge accretionary complex (MAC) is a product of the convergence of Africa–Europe–Aegean plates. As a result, the region exhibits a continuous mass change (horizontal/vertical movements) that generates earthquakes. Over the last 50 years, approximately 430 earthquakes with M ≥ 5, including 36 M ≥ 6 earthquakes, have been recorded in the region. This study aims to link the ocean bottom deformations manifested through ocean bottom pressure variations with the earthquakes’ time series. To this end, we investigated the time series of the ocean bottom pressure (OBP) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions. The OBP time series comprises a decreasing trend in addition to 1.02, 1.52, 4.27, and 10.66-year periodic components, which can be explained by atmosphere, oceans, and hydrosphere (AOH) processes, the Earth’s pole movement, solar activity, and core–mantle coupling. It can be inferred from the results that the OBP anomalies time series/mass change is linked to a rising trend and periods in the earthquakes’ energy time series. Based on this preliminary work, ocean-bottom pressure variation appears to be a promising lead for further research.


Sign in / Sign up

Export Citation Format

Share Document