scholarly journals Contrasting Observed Atmospheric Responses to Tropical Sea Surface Temperature Warming Patterns

2021 ◽  
Vol 126 (7) ◽  
Author(s):  
Anna Mackie ◽  
Helen E. Brindley ◽  
Paul I. Palmer
2010 ◽  
Vol 37 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Kevin E. Trenberth ◽  
John T. Fasullo ◽  
Chris O'Dell ◽  
Takmeng Wong

2021 ◽  
Author(s):  
Abdullah A. Fahad ◽  
Natalie J. Burls

AbstractSouthern hemisphere subtropical anticyclones are projected to change in a warmer climate during both austral summer and winter. A recent study of CMIP 5 & 6 projections found a combination of local diabatic heating changes and static-stability-induced changes in baroclinic eddy growth as the dominant drivers. Yet the underlying mechanisms forcing these changes still remain uninvestigated. This study aims to enhance our mechanistic understanding of what drives these Southern Hemisphere anticyclones changes during both seasons. Using an AGCM, we decompose the response to CO2-induced warming into two components: (1) the fast atmospheric response to direct CO2 radiative forcing, and (2) the slow atmospheric response due to indirect sea surface temperature warming. Additionally, we isolate the influence of tropical diabatic heating with AGCM added heating experiments. As a complement to our numerical AGCM experiments, we analyze the Atmospheric and Cloud Feedback Model Intercomparison Project experiments. Results from sensitivity experiments show that slow subtropical sea surface temperature warming primarily forces the projected changes in subtropical anticyclones through baroclinicity change. Fast CO2 atmospheric radiative forcing on the other hand plays a secondary role, with the most notable exception being the South Atlantic subtropical anticyclone in austral winter, where it opposes the forcing by sea surface temperature changes resulting in a muted net response. Lastly, we find that tropical diabatic heating changes only significantly influence Southern Hemisphere subtropical anticyclone changes through tropospheric wind shear changes during austral winter.


2003 ◽  
Vol 18 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Aradhna K. Tripati ◽  
Margaret L. Delaney ◽  
James C. Zachos ◽  
Linda D. Anderson ◽  
Daniel C. Kelly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document