The Impact of Assimilating COSMIC‐2 Observations of Electron Density in WACCMX

Author(s):  
N. M. Pedatella ◽  
J. L. Anderson
Keyword(s):  
2018 ◽  
Vol 73 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Jhonatha R. dos Santos ◽  
Jonas Jakutis Neto ◽  
N. Rodrigues ◽  
M.G. Destro ◽  
José W. Neri ◽  
...  

In this work, we suggest a methodology to determine the impact parameter for neutral dysprosium emission lines from the characterization of the plasma generated by laser ablation in a sealed chamber filled with argon. The procedure is a combination of known consistent spectroscopic methods for plasma temperature determination, electron density, and species concentration. With an electron density of 3.1 × 1018 cm–3 and temperature close to 104 K, we estimated the impact electron parameter for nine spectral lines of the neutral dysprosium atom. The gaps in the impact parameter data in the literature, mainly for heavy elements, stress the importance of the proposed method.


Author(s):  
D. C. Price ◽  
C. Flynn ◽  
A. Deller

Abstract Galactic electron density distribution models are crucial tools for estimating the impact of the ionised interstellar medium on the impulsive signals from radio pulsars and fast radio bursts. The two prevailing Galactic electron density models (GEDMs) are YMW16 (Yao et al. 2017, ApJ, 835, 29) and NE2001 (Cordes & Lazio 2002, arXiv e-prints, pp astro–ph/0207156). Here, we introduce a software package PyGEDM which provides a unified application programming interface for these models and the YT20 (Yamasaki & Totani 2020, ApJ, 888, 105) model of the Galactic halo. We use PyGEDM to compute all-sky maps of Galactic dispersion measure (DM) for YMW16 and NE2001 and compare the large-scale differences between the two. In general, YMW16 predicts higher DM values towards the Galactic anticentre. YMW16 predicts higher DMs at low Galactic latitudes, but NE2001 predicts higher DMs in most other directions. We identify lines of sight for which the models are most discrepant, using pulsars with independent distance measurements. YMW16 performs better on average than NE2001, but both models show significant outliers. We suggest that future campaigns to determine pulsar distances should focus on targets where the models show large discrepancies, so future models can use those measurements to better estimate distances along those line of sight. We also suggest that the Galactic halo should be considered as a component in future GEDMs, to avoid overestimating the Galactic DM contribution for extragalactic sources such as FRBs.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4409
Author(s):  
Carlo Gatti ◽  
Alessandro Dessì ◽  
Roberto Dallocchio ◽  
Victor Mamane ◽  
Sergio Cossu ◽  
...  

Positive electrostatic potential (V) values are often associated with σ- and π-holes, regions of lower electron density which can interact with electron-rich sites to form noncovalent interactions. Factors impacting σ- and π-holes may thus be monitored in terms of the shape and values of the resulting V. Further precious insights into such factors are obtained through a rigorous decomposition of the V values in atomic or atomic group contributions, a task here achieved by extending the Bader–Gatti source function (SF) for the electron density to V. In this article, this general methodology is applied to a series of 4,4′-bipyridine derivatives containing atoms from Groups VI (S, Se) and VII (Cl, Br), and the pentafluorophenyl group acting as a π-hole. As these molecules are characterized by a certain degree of conformational freedom due to the possibility of rotation around the two C–Ch bonds, from two to four conformational motifs could be identified for each structure through conformational search. On this basis, the impact of chemical and conformational features on σ- and π-hole regions could be systematically evaluated by computing the V values on electron density isosurfaces (VS) and by comparing and dissecting in atomic/atomic group contributions the VS maxima (VS,max) values calculated for different molecular patterns. The results of this study confirm that both chemical and conformational features may seriously impact σ- and π-hole regions and provide a clear analysis and a rationale of why and how this influence is realized. Hence, the proposed methodology might offer precious clues for designing changes in the σ- and π-hole regions, aimed at affecting their potential involvement in noncovalent interactions in a desired way.


2012 ◽  
Vol 229-231 ◽  
pp. 1614-1617
Author(s):  
Jiang Fan Liu ◽  
Guo Bin Wan ◽  
Jin Sheng Zhang ◽  
Xiao Li Xi

The electromagnetic simulation software CST was used to analyze the effects of reentry plasma sheath on the GPS navigation antenna. The Impedance and radiation characteristics of antenna were studied on condition that the antenna was coated with uniform and nonuniform electron density distribution plasma sheath respectively. The results show that, the antenna coated with the uniform plasma sheath, the plasma electron density increasing, the antenna operating frequency moves to high-frequency and that the directivity decreases as well; when the antenna was coated with nonuniform plasma, with the higher electron peak density of plasma sheath, besides that the operating frequency also moves to high-frequency, the bandwidth stretches wide and the return loss reduces; the antenna radiation pattern distorts seriously at the electron peak density of 1018m-3.


2011 ◽  
Vol 89 (6) ◽  
pp. 657-662 ◽  
Author(s):  
Nicholas J. Russ ◽  
Chun-min Chang ◽  
Jing Kong

We present an efficient algorithm for evaluating the exchange-correlation contribution to the nuclear gradients of density-functional theory calculation within the local spin-density approximation. The algorithm is an extension of the multiresolution exchange-correlation (mrXC) method, which treats smooth and compact parts of the electron density separately. The nuclear gradient of the smooth density is calculated on the even-spaced grid while the compact part of the density is handled on the normal atom-centered grid (ACG). The overall formulism is still formally based on the ACG, and thus does not change the results of the existing ACG-based algorithms for all-electron density-functional theory (DFT) calculations. The variation of the positions and weights of ACG owing to the nuclear perturbation is also handled rigorously. Benchmark calculations with different basis sets and sizes of ACG show that mrXC reduces the computational cost by several times without loss of accuracy. It also lessens the impact on the CPU time when the size of the ACG is increased.


2011 ◽  
Vol 4 (12) ◽  
pp. 2837-2850 ◽  
Author(s):  
A. J. Mannucci ◽  
C. O. Ao ◽  
X. Pi ◽  
B. A. Iijima

Abstract. We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO) retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km) tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.


Author(s):  
Leticia Juan de Dios ◽  
Mónica Rodríguez

Abstract We study the density structures of planetary nebulae implied by four diagnostics that sample different regions within the nebulae: [S ii] λ6716/λ6731, [O ii] λ3726/λ3729, [Cl iii] λ5518/λ5538, and [Ar iv] λ4711/λ4740. We use a sample of 46 objects with deep spectra that allow the calculation of the electron density from these four diagnostics, and explore the impact that different atomic data have on the results. We compare the observational results with those obtained from photoionization models characterized by three different density structures. We conclude that the atomic data used in the calculations of electron density fully determine the density structures that are derived for the objects. We illustrate this by selecting three combinations of atomic data that lead to observational results that are compatible with each of the three different density structures explored with the models.


2021 ◽  
Author(s):  
Isabel Fernandez-Gomez ◽  
Andreas Goss ◽  
Michael Schmidt ◽  
Mona Kosary ◽  
Timothy Kodikara ◽  
...  

<p>The response of the Ionosphere - Thermosphere (IT) system to severe storm conditions is of great importance to fully understand its coupling mechanisms. The challenge to represent the governing processes of the upper atmosphere depends, to a large extent, on an accurate representation of the true state of the IT system, that we obtain by assimilating relevant measurements into physics-based models. Thermospheric Mass Density (TMD) is the summation of total neutral mass within the atmosphere that is derived from accelerometer measurements of satellite missions such as CHAMP, GOCE, GRACE(-FO) and Swarm. TMD estimates can be assimilated into physics-based models to modify the state of the processes within the IT system. Previous studies have shown that this modification can potentially improve the simulations and predictions of the ionospheric electron density. These differences could also be interpreted as an indicator of the ionosphere-thermosphere interaction. The research presented here, aims to quantify the impact of data satellite based TMD assimilation on numerical model results.</p><p>Subject of this study is the Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) physics-based model in combination with the recently developed Thermosphere-Ionosphere Data Assimilation (TIDA) scheme. TMD estimates from the ESA’s Swarm mission are assimilated in CTIPe-TIDA during the 16 to the 20 of March 2015. This period was characterized by a strong geomagnetic storm that triggered significant changes in the IT system, the so-called St. Patrick day storm 2015. To assess the changes in the IT system during storm conditions due to data assimilation, the model results from assimilating SWARM mass density normalized to the altitude of 400 km are compared to independent thermospheric estimates like GRACE-TMDS. In order to evaluate the impact of the data assimilation on the ionosphere, the corresponding output of electron density is compared to high-quality electron density estimates derived from data-driven model of the DGFI-TUM.</p>


2020 ◽  
Author(s):  
Ganesh Lalgudi Gopalakrishnan ◽  
Michael Schmidt ◽  
Eren Erdogan

<p><span>Electron density is the most important key parameter to describe the </span><span>state of the ionospheric plasma </span><span>varying with latitude, longitude, altitude and time. The upper atmosphere is decomposed into the four layers D, E, F1 and F2 of the ionosphere as well as the plasmasphere. Space weather events manifest themselves with specific "signatures" in distinct ionospheric layers. Therefore, the role of each layer in characterizing the ionosphere during nominal and extreme space weather events is highly important for scientific and operational purposes. </span></p><p><span>Accordingly, we model the total electron density as the sum of the electron densities of the individual layers. The key parameters of each layer, namely peak electron density, the corresponding peak height and scale height, are modeled by series expansions in terms of polynomial B-splines for latitude and trigonometric B-splines for longitude. The Chapman profile function is chosen to define the electron density along the altitude. This way, the electron density modeling is setup as a parameter estimation problem. In the case of modelling multiple layers simultaneously, the estimation of coefficients of the key parameters becomes challenging due to the correlations between the different key parameters. </span></p><p><span>One possibility to address the above issue is by imposing constraints on the ionospheric key parameters (and by extension on the B-spline coefficients). As an example, we constrain the F2 layer peak height to be always above the F1 layer peak height. We also constrain the key parameters to be non-negative and possibly to to certain well defined bounds. This way the physical properties of the ionosphere layers are included in the modelling. We estimate the coefficients with regard to the imposition of the bounds in form of inequality constraints using a convex optimization approach. We describe the underlying mathematical procedure and validate it using </span><span>the IRI model as well as GNSS observations and electron density measurements from occultation missions. For the specific case of using IRI model data as the reference “truth”, we show the performance of the optimization algorithm using a “closed loop” validation. Such a validation allows an in-depth analysis of the impact of choosing a desired number of unknown coefficients to be estimated and the total number of constraints applied. We describe the parameterization of the different ionosphere key parameters considering the specific requirements from operational aspects (such as the need for modelling F2 layer), scientific aspects with regard to ionosphere-thermosphere studies (need for modelling the D, E or F1 layers) and also considering the aspects related to computation load. </span></p><p><span>We describe the advantages of using the optimization approach compared to the unconstrained least squares solution. While such constraints on key parameters can be fixed under nominal ionospheric conditions, but under adverse space weather effects these constraints need to be modified (constraints become stricter or more relaxed). For this purpose, we show the dynamic effect of modifying the constraints on global modelling performance and accuracy. We also provide the uncertainty of the estimated coefficients using a Monte-Carlo approach.</span></p>


2017 ◽  
Vol 24 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Charles S. Bury ◽  
Ian Carmichael ◽  
Elspeth F Garman

During macromolecular X-ray crystallography experiments, protein crystals held at 100 K have been widely reported to exhibit reproducible bond scission events at doses on the order of several MGy. With the objective to mitigate the impact of radiation damage events on valid structure determination, it is essential to correctly understand the radiation chemistry mechanisms at play. OH-cleavage from tyrosine residues is regularly cited as amongst the most available damage pathways in protein crystals at 100 K, despite a lack of widespread reports of this phenomenon in protein crystal radiation damage studies. Furthermore, no clear mechanism for phenolic C—O bond cleavage in tyrosine has been reported, with the tyrosyl radical known to be relatively robust and long-lived in both aqueous solutions and the solid state. Here, the initial findings of Tyr –OH group damage in a myrosinase protein crystal have been reviewed. Consistent with that study, at increasing doses, clear electron density loss was detectable local to Tyr –OH groups. A systematic investigation performed on a range of protein crystal damage series deposited in the Protein Data Bank has established that Tyr –OH electron density loss is not generally a dominant damage pathway in protein crystals at 100 K. Full Tyr aromatic ring displacement is here proposed to account for instances of observable Tyr –OH electron density loss, with the original myrosinase data shown to be consistent with such a damage model. Systematic analysis of the effects of other environmental factors, including solvent accessibility and proximity to disulfide bonds or hydrogen bond interactions, is also presented. Residues in known active sites showed enhanced sensitivity to radiation-induced disordering, as has previously been reported.


Sign in / Sign up

Export Citation Format

Share Document