Following the time course of feature extraction with event-related brain potentials

1996 ◽  
Author(s):  
Lourdes Anllo-Vento ◽  
Steven A. Hillyard
NeuroImage ◽  
1996 ◽  
Vol 3 (3) ◽  
pp. S173
Author(s):  
Lourdes Anllo-Vento ◽  
Steven A. Hillyard

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4117
Author(s):  
Y-h. Taguchi ◽  
Turki Turki

The development of the medical applications for substances or materials that contact cells is important. Hence, it is necessary to elucidate how substances that surround cells affect gene expression during incubation. In the current study, we compared the gene expression profiles of cell lines that were in contact with collagen–glycosaminoglycan mesh and control cells. Principal component analysis-based unsupervised feature extraction was applied to identify genes with altered expression during incubation in the treated cell lines but not in the controls. The identified genes were enriched in various biological terms. Our method also outperformed a conventional methodology, namely, gene selection based on linear regression with time course.


2002 ◽  
Vol 14 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Gilles Pourtois ◽  
Damien Debatisse ◽  
Paul-Andre Despland ◽  
Beatrice de Gelder

2004 ◽  
Vol 16 (7) ◽  
pp. 1272-1288 ◽  
Author(s):  
Nicole Y. Y. Wicha ◽  
Eva M. Moreno ◽  
Marta Kutas

Recent studies indicate that the human brain attends to and uses grammatical gender cues during sentence comprehension. Here, we examine the nature and time course of the effect of gender on word-by-word sentence reading. Event related brain potentials were recorded to an article and noun, while native Spanish speakers read medium to high-constraint Spanish sentences for comprehension. The noun either fit the sentence meaning or not, and matched the preceding article in gender or not; in addition, the preceding article was either expected or unexpected based on prior sentence context. Semantically anomalous nouns elicited an N400. Gender disagreeing nouns elicited a posterior late positivity (P600), replicating previous findings for words. Gender agreement and semantic congruity interacted in both the N400 window—with a larger negativity frontally for double violations—and the P600 window—with a larger positivity for semantic anomalies, relative to the prestimulus baseline. Finally, unexpected articles elicited an enhanced positivity (500–700 msec post onset) relative to expected articles. Overall, our data indicate that readers anticipate and attend to the gender of both articles and nouns, and use gender in real time to maintain agreement and to build sentence meaning.


2021 ◽  
Author(s):  
Y-h. Taguchi ◽  
Turki Turki

AbstractDevelopment of the medical applications for substances or materials that contact the cells is important. Hence, it is necessary to elucidate how substance that surround cells affect the gene expression during incubation. Here, we compared the gene expression profiles of cell lines that were in contact with the collagen–glycosaminoglycan mesh and control cells. Principal component analysis-based unsupervised feature extraction was applied to identify genes with altered expression during incubation in the treated cell lines but not in the controls. The identified genes were enriched in various biological terms. Our method also outperformed a conventional methodology, namely, gene selection based on linear regression with time course.


2001 ◽  
Vol 13 (2) ◽  
pp. 241-255 ◽  
Author(s):  
Pascaline Regnault ◽  
Emmanuel Bigand ◽  
Mireille Besson

The goal of this study was to analyze the time-course of sensory (bottom-up) and cognitive (top-down) processes that govern musical harmonic expectancy. Eight-chord sequences were presented to 12 musicians and 12 nonmusicians. Expectations for the last chord were manipulated both at the sensory level (i.e., the last chord was sensory consonant or dissonant) and at the cognitive level (the harmonic function of the target was varied by manipulating the harmonic context built up by the first six chords of the sequence). Changes in the harmonic function of the target chord mainly modulate the amplitude of a positive component peaking around 300 msec (P3) after target onset, reflecting top-down influences on the perceptual stages of processing. In contrast, changes in the acoustic structure of the target chord (sensory consonance) mainly modulate the amplitude of a late positive component that develops between 300 and 800 msec after target onset. Most importantly, the effects of sensory consonance and harmonic context on the event-related brain potentials associated with the target chords were found to be independent, thus suggesting that two separate processors contribute to the building up of musical expectancy.


2004 ◽  
Vol 16 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Robert West

Recent computational modeling and behavioral work indicate that age-related declines in the ability to represent task context may contribute to disruptions of working memory and selective attention in older adults. However, it is unclear whether age-related declines in context processing arise from a disruption of the encoding or maintenance of task context and how age-related declines in context processing interact with mechanisms supporting conflict detection and resolution processes contributing to efficient selection of task-relevant information. This study examines the effects of aging on the neural correlates of context and conflict processing in the Stroop task using event-related brain potentials (ERPs). Age-related differences in the time course of modulations of the ERPs associated with encoding (P3) and maintaining (slow wave) task context were observed. There were also age-related differences in the N450, conflict SP, and ERN associated with conflict processing that interacted with task context. These data indicate that aging is associated with declines in the efficiency of those neural mechanisms supporting both context and conflict processing, and that the effects of aging are not pervasive but rather interact with task context.


2011 ◽  
Vol 23 (2) ◽  
pp. 277-293 ◽  
Author(s):  
Stefanie Regel ◽  
Thomas C. Gunter ◽  
Angela D. Friederici

Although the neurocognitive processes underlying the comprehension of figurative language, especially metaphors and idioms, have been studied extensively, less is known about the processing of irony. In two experiments using event-related brain potentials (ERPs), we examined the types of cognitive processes involved in the comprehension of ironic and literal sentences and their relative time course. The experiments varied in modality (auditory, visual), task demands (comprehension task vs. passive reading), and probability of stimulus occurrence. ERPs consistently revealed a large late positivity (i.e., P600 component) in the absence of an N400 component for irony compared to equivalent literal sentences independent of modality. This P600 was shown to be unaffected by the factors task demands and probability of occurrence. Taken together, the findings suggest that the observed P600 is related to irony processing, and might be a reflection of pragmatic interpretation processes. During the comprehension of irony, no semantic integration difficulty arises (absence of N400), but late inferential processes appear to be necessary for understanding ironic meanings (presence of P600). This finding calls for a revision of current models of figurative language processing.


Sign in / Sign up

Export Citation Format

Share Document