scholarly journals Weaker connectivity in resting state networks is associated with disinhibited eating in older adults

Author(s):  
Anthony Brennan ◽  
Lars Marstaller ◽  
Hana Burianová ◽  
David Benton ◽  
Claire J. Hanley ◽  
...  

Abstract Background/objectives Obesity affects more than forty percent of adults over the age of sixty. Aberrant eating styles such as disinhibition have been associated with the engagement of brain networks underlying executive functioning, attentional control, and interoception. However, these effects have been exclusively studied in young samples overlooking those most at risk of obesity related harm. Methods Here we assessed associations between resting-state functional connectivity and disinhibited eating (using the Three Factor Eating Questionnaire) in twenty-one younger (aged 19–34 years, BMI range: 18–31) and twenty older (aged 60–73 years, BMI range: 19–32) adults matched for BMI. The Alternative Healthy Eating Index was used to quantify diet quality. Results Older, compared to younger, individuals reported lower levels of disinhibited eating, consumed a healthier diet, and had weaker connectivity in the frontoparietal (FPN) and default mode (DMN) networks. In addition, associations between functional connectivity and eating behaviour differed between the two age groups. In older adults, disinhibited eating was associated with weaker connectivity in the FPN and DMN––effects that were absent in the younger sample. Importantly, these effects could not be explained by differences in habitual diet. Conclusions These findings point to a change in interoceptive signalling as part of the ageing process, which may contribute to behavioural changes in energy intake, and highlight the importance of studying this under researched population.

2019 ◽  
Author(s):  
Tommer Nir ◽  
Yael Jacob ◽  
Kuang-Han Huang ◽  
Arthur E. Schwartz ◽  
Jess W. Brallier ◽  
...  

ABSTRACTThough a growing body of literature is addressing the possible longer-term cognitive effects of anesthetics, to date no study has delineated the normal trajectory of neural recovery due to anesthesia alone in older adults. We obtained resting state functional magnetic resonance imaging scans on 62 healthy human volunteers between ages forty and eighty before, during, and after sevoflurane (general) anesthesia, in the absence of surgery, as part of a larger study on cognitive function post-anesthesia. Resting state networks expression decreased consistently one hour after emergence from anesthesia. This corresponded to a global reduction in anticorrelated functional connectivity post-anesthesia, seen across individual regions-of-interest. Positively correlated functional connectivity remained constant across peri-anesthetic states. All measures returned to baseline 1 day later, with individual regions-of-interest essentially returning to their pre-anesthesia connectivity levels. These results define normal peri-anesthetic changes in resting state connectivity in healthy older adults.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A159-A160
Author(s):  
C Moon ◽  
R A Cole ◽  
Q Xiao ◽  
M W Voss

Abstract Introduction Resting-state functional connectivity is coherent brain activity in a task-free state that strongly correlates to task-evoked sensory, motor, and higher-order cognitive systems. Certain networks show decreased functional connectivity with aging. Aging is associated with changes in circadian rhythms and sleep-wake cycles. Limited research has been conducted on how circadian activity and sleep are related to markers of functional brain aging. The purpose of this study was to explore whether rest-activity patterns and shorter sleep duration are related to functional connectivity of specific resting-state networks in older adults. Methods A total of 124 cognitively normal participants (mean age (SD) = 67.2 (5.7), 42% men) underwent 3.0 T MRI and week-long wrist actigraphy protocols. Rest-activity pattern was analyzed using an extended cosine model calculating acrophase (time of peak activity) and pseudo-F statistics of goodness-of-fit (a measure of overall rhythmicity). We used resting-state fMRI scans to measure functional connectivity in association and sensory networks as defined by the Schaefer 17 network functional atlas. Multiple linear regression analysis was used to investigate how rest-activity pattern parameters and sleep duration are associated with resting-state functional connectivity, adjusting for age, sex, and sleep apnea. Results We found that the average acrophase was 2:30 PM (SD = 54 min), and delayed acrophase (average vs. delayed [+1SD]) was associated with lower functional connectivity of the right-lateralized default mode network A (p=0.02), and higher pseudo-F statistics was associated with higher functional connectivity in networks including left dorsal attention B (p=0.001), right somatomotor A (p = 0.05), and somatomotor B (both p=0.02). Longer sleep duration was associated with higher right executive control B (p=0.03). Conclusion The overall rhythmicity of diurnal rest-activity patterns and longer sleep duration are associated with some resting-state functional networks. Further investigation is needed to understand the mechanisms between circadian rhythm and brain function. Support National Institute of Health, U of Iowa Aging Mind Brain Initiative, Center on Aging


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1889-P
Author(s):  
ALLISON L.B. SHAPIRO ◽  
SUSAN L. JOHNSON ◽  
BRIANNE MOHL ◽  
GRETA WILKENING ◽  
KRISTINA T. LEGGET ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Nigul Ilves ◽  
Pilvi Ilves ◽  
Rael Laugesaar ◽  
Julius Juurmaa ◽  
Mairi Männamaa ◽  
...  

Perinatal stroke is a leading cause of congenital hemiparesis and neurocognitive deficits in children. Dysfunctions in the large-scale resting-state functional networks may underlie cognitive and behavioral disability in these children. We studied resting-state functional connectivity in patients with perinatal stroke collected from the Estonian Pediatric Stroke Database. Neurodevelopment of children was assessed by the Pediatric Stroke Outcome Measurement and the Kaufman Assessment Battery. The study included 36 children (age range 7.6–17.9 years): 10 with periventricular venous infarction (PVI), 7 with arterial ischemic stroke (AIS), and 19 controls. There were no differences in severity of hemiparesis between the PVI and AIS groups. A significant increase in default mode network connectivity (FDR 0.1) and lower cognitive functions (p<0.05) were found in children with AIS compared to the controls and the PVI group. The children with PVI had no significant differences in the resting-state networks compared to the controls and their cognitive functions were normal. Our findings demonstrate impairment in cognitive functions and neural network profile in hemiparetic children with AIS compared to children with PVI and controls. Changes in the resting-state networks found in children with AIS could possibly serve as the underlying derangements of cognitive brain functions in these children.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Chemin Lin ◽  
Maria Ly ◽  
Helmet T. Karim ◽  
Wenjing Wei ◽  
Beth E. Snitz ◽  
...  

Abstract Background Pathological processes contributing to Alzheimer’s disease begin decades prior to the onset of clinical symptoms. There is significant variation in cognitive changes in the presence of pathology, functional connectivity may be a marker of compensation to amyloid; however, this is not well understood. Methods We recruited 64 cognitively normal older adults who underwent neuropsychological testing and biannual magnetic resonance imaging (MRI), amyloid imaging with Pittsburgh compound B (PiB)-PET, and glucose metabolism (FDG)-PET imaging for up to 6 years. Resting-state MRI was used to estimate connectivity of seven canonical neural networks using template-based rotation. Using voxel-wise paired t-tests, we identified neural networks that displayed significant changes in connectivity across time. We investigated associations among amyloid and longitudinal changes in connectivity and cognitive function by domains. Results Left middle frontal gyrus connectivity within the memory encoding network increased over time, but the rate of change was lower with greater amyloid. This was no longer significant in an analysis where we limited the sample to only those with two time points. We found limited decline in cognitive domains overall. Greater functional connectivity was associated with better attention/processing speed and executive function (independent of time) in those with lower amyloid but was associated with worse function with greater amyloid. Conclusions Increased functional connectivity serves to preserve cognitive function in normal aging and may fail in the presence of pathology consistent with compensatory models.


2016 ◽  
Vol 17 (4) ◽  
pp. S59
Author(s):  
S. Atalla ◽  
J. Gore ◽  
S. Bruehl ◽  
B. Rogers ◽  
M. Dietrich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document