Bioglass promotes wound healing by inhibiting endothelial cell pyroptosis through regulation of the connexin 43/reactive oxygen species (ROS) signaling pathway

Author(s):  
Kailun Zhang ◽  
Bo Chai ◽  
Hao Ji ◽  
liuqing Chen ◽  
Yanbing Ma ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Jaenen ◽  
S. Fraguas ◽  
K. Bijnens ◽  
M. Heleven ◽  
T. Artois ◽  
...  

AbstractDespite extensive research on molecular pathways controlling the process of regeneration in model organisms, little is known about the actual initiation signals necessary to induce regeneration. Recently, the activation of ERK signaling has been shown to be required to initiate regeneration in planarians. However, how ERK signaling is activated remains unknown. Reactive Oxygen Species (ROS) are well-known early signals necessary for regeneration in several models, including planarians. Still, the probable interplay between ROS and MAPK/ERK has not yet been described. Here, by interfering with major mediators (ROS, EGFR and MAPK/ERK), we were able to identify wound-induced ROS, and specifically H2O2, as upstream cues in the activation of regeneration. Our data demonstrate new relationships between regeneration-related ROS production and MAPK/ERK activation at the earliest regeneration stages, as well as the involvement of the EGFR-signaling pathway. Our results suggest that (1) ROS and/or H2O2 have the potential to rescue regeneration after MEK-inhibition, either by H2O2-treatment or light therapy, (2) ROS and/or H2O2 are required for the activation of MAPK/ERK signaling pathway, (3) the EGFR pathway can mediate ROS production and the activation of MAPK/ERK during planarian regeneration.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4138
Author(s):  
Yeon-Jin Cho ◽  
Sun-Hye Choi ◽  
Ra-Mi Lee ◽  
Han-Sung Cho ◽  
Hyewhon Rhim ◽  
...  

Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed to clarify how gintonin attenuates iodoacetic acid (IAA)-induced oxidative stress. The mouse hippocampal cell line HT22 was used. Gintonin treatment significantly attenuated IAA-induced reactive oxygen species (ROS) overproduction, ATP depletion, and cell death. However, treatment with Ki16425, an LPA1/3 receptor antagonist, suppressed the neuroprotective effects of gintonin. Gintonin elicited [Ca2⁺]i transients in HT22 cells. Gintonin-mediated [Ca2⁺]i transients through the LPA1 receptor-PLC-IP3 signaling pathway were coupled to increase both the expression and release of BDNF. The released BDNF activated the TrkB receptor. Induction of TrkB phosphorylation was further linked to Akt activation. Phosphorylated Akt reduced IAA-induced oxidative stress and increased cell survival. Our results indicate that gintonin attenuated IAA-induced oxidative stress in neuronal cells by activating the LPA1 receptor-BDNF-TrkB-Akt signaling pathway. One of the gintonin-mediated neuroprotective effects may be achieved via anti-oxidative stress in nervous systems.


2021 ◽  
Vol 124 ◽  
pp. 219-232 ◽  
Author(s):  
Hao Cheng ◽  
Zhe Shi ◽  
Kan Yue ◽  
Xusheng Huang ◽  
Yichuan Xu ◽  
...  

2014 ◽  
Vol 320 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Nina Tandon ◽  
Elisa Cimetta ◽  
Aranzazu Villasante ◽  
Nicolette Kupferstein ◽  
Michael D. Southall ◽  
...  

2008 ◽  
Vol 10 (4) ◽  
pp. 679-690 ◽  
Author(s):  
Qunwei Zhang ◽  
Shampa Chatterjee ◽  
Zhihua Wei ◽  
Wei Dong Liu ◽  
Aron B. Fisher

Nanoscale ◽  
2022 ◽  
Author(s):  
Liming Peng ◽  
Xuyang Yang ◽  
Song Wang ◽  
Joseph Yau Kei Chan ◽  
Yong Chen ◽  
...  

Antibacterial chemodynamic therapy (aCDT) has captured considerable attention in the treatment of pathogen-induced infection due to its potential to inactivate bacteria through germicidal reactive oxygen species (ROS). However, the lifespan...


2002 ◽  
Vol 115 (9) ◽  
pp. 1837-1846 ◽  
Author(s):  
Sandra van Wetering ◽  
Jaap D. van Buul ◽  
Safira Quik ◽  
Frederik P. J. Mul ◽  
Eloise C. Anthony ◽  
...  

The integrity of the endothelium is dependent on cell-cell adhesion, which is mediated by vascular-endothelial (VE)-cadherin. Proper VE-cadherin-mediated homotypic adhesion is, in turn, dependent on the connection between VE-cadherin and the cortical actin cytoskeleton. Rho-like small GTPases are key molecular switches that control cytoskeletal dynamics and cadherin function in epithelial as well as endothelial cells. We show here that a cell-penetrating, constitutively active form of Rac (Tat-RacV12) induces a rapid loss of VE-cadherin-mediated cell-cell adhesion in endothelial cells from primary human umbilical veins (pHUVEC). This effect is accompanied by the formation of actin stress fibers and is dependent on Rho activity. However,transduction of pHUVEC with Tat-RhoV14, which induces pronounced stress fiber and focal adhesion formation, did not result in a redistribution of VE-cadherin or an overall loss of cell-cell adhesion. In line with this observation, endothelial permeability was more efficiently increased by Tat-RacV12 than by Tat-RhoV14. The loss of cell-cell adhesion, which is induced by Tat-RacV12, occurred in parallel to and was dependent upon the intracellular production of reactive oxygen species (ROS). Moreover, Tat-RacV12 induced an increase in tyrosine phosphorylation of a component the VE-cadherin-catenin complex, which was identified as α-catenin. The functional relevance of this signaling pathway was further underscored by the observation that endothelial cell migration, which requires a transient reduction of cell-cell adhesion, was blocked when signaling through ROS was inhibited. In conclusion, Rac-mediated production of ROS represents a previously unrecognized means of regulating VE-cadherin function and may play an important role in the (patho)physiology associated with inflammation and endothelial damage as well as with endothelial cell migration and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document