scholarly journals Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuki Enomoto ◽  
Tomoya Tagami ◽  
Yusuke Ueda ◽  
Yuta Moriyama ◽  
Kentaro Fujiwara ◽  
...  

AbstractLead-halide perovskites are highly promising for various optoelectronic applications, including laser devices. However, fundamental photophysics explaining the coherent-light emission from this material system is so intricate and often the subject of debate. Here, we systematically investigate photoluminescence properties of all-inorganic perovskite microcavity at room temperature and discuss the excited state and the light–matter coupling regime depending on excitation density. Angle-resolved photoluminescence clearly exhibits that the microcavity system shows a transition from weak coupling regime to strong coupling regime, revealing the increase in correlated electron–hole pairs. With pumping fluence above the threshold, the photoluminescence signal shows a lasing behavior with bosonic condensation characteristics, accompanied by long-range phase coherence. The excitation density required for the lasing behavior, however, is found to exceed the Mott density, excluding the exciton as the excited state. These results demonstrate that the polaritonic Bardeen–Cooper–Schrieffer state originates the strong coupling formation and the lasing behavior.

2019 ◽  
Vol 205 ◽  
pp. 04012
Author(s):  
M. Richter Johannes ◽  
Federico Branchi ◽  
V. A. Camargo Franco ◽  
Tetsuhiko Nagahara ◽  
Baodan Zhao ◽  
...  

We use 2D electronic spectroscopy with sub-10-fs resolution to probe carrier-carrier scattering in perovskites. We report excitation-density dependent thermalization times below 100-fs. Strong coupling with excitonic states further reveals sub-bandgap states with low oscillator strength.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Satyendra Nath Gupta ◽  
Ora Bitton ◽  
Tomas Neuman ◽  
Ruben Esteban ◽  
Lev Chuntonov ◽  
...  

AbstractPlasmonic cavities can confine electromagnetic radiation to deep sub-wavelength regimes. This facilitates strong coupling phenomena to be observed at the limit of individual quantum emitters. Here, we report an extensive set of measurements of plasmonic cavities hosting one to a few semiconductor quantum dots. Scattering spectra show Rabi splitting, demonstrating that these devices are close to the strong coupling regime. Using Hanbury Brown and Twiss interferometry, we observe non-classical emission, allowing us to directly determine the number of emitters in each device. Surprising features in photoluminescence spectra point to the contribution of multiple excited states. Using model simulations based on an extended Jaynes-Cummings Hamiltonian, we find that the involvement of a dark state of the quantum dots explains the experimental findings. The coupling of quantum emitters to plasmonic cavities thus exposes complex relaxation pathways and emerges as an unconventional means to control dynamics of quantum states.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this Chapter we address the physics of Bose-Einstein condensation and its implications to a driven-dissipative system such as the polariton laser. We discuss the dynamics of exciton-polaritons non-resonantly pumped within a microcavity in the strong coupling regime. It is shown how the stimulated scattering of exciton-polaritons leads to formation of bosonic condensates that may be stable at elevated temperatures, including room temperature.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

This chapter presents experimental studies performed on planar semiconductor microcavities in the strong-coupling regime. The first section reviews linear experiments performed in the 1990s that evidence the linear optical properties of cavity exciton-polaritons. The chapter is then focused on experimental and theoretical studies of resonantly excited microcavity emission. We mainly describe experimental configuations in which stimulated scattering was observed due to formation of a dynamical condensate of polaritons. Pump-probe and cw experiments are described in addition. Dressing of the polariton dispersion and bistability of the polariton system due to inter-condensate interactions are discussed. The semiclassical and the quantum theories of these effects are presented and their results analysed. The potential for realization of devices is also discussed.


Author(s):  
Wanchun Xiang ◽  
Shengzhong Liu ◽  
Wolfgang Tress

Inorganic perovskite based solar cells (PSCs) have been receiving unprecedented attention worldwide in the past several years due to their higher intrinsic stability towards high temperature and high theoretical power...


1997 ◽  
Vol 22 (3) ◽  
pp. 371-374 ◽  
Author(s):  
J. Bloch ◽  
R. Planel ◽  
V. Thierry-Mieg ◽  
J.M. Gérard ◽  
D. Barrier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document