scholarly journals Propagating acoustic waves on a culture substrate regulate the directional collective cell migration

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chikahiro Imashiro ◽  
Byungjun Kang ◽  
Yunam Lee ◽  
Youn-Hoo Hwang ◽  
Seonghun Im ◽  
...  

AbstractCollective cell migration plays a critical role in physiological and pathological processes such as development, wound healing, and metastasis. Numerous studies have demonstrated how various types of chemical, mechanical, and electrical cues dictate the collective migratory behaviors of cells. Although an acoustic cue can be advantageous because of its noninvasiveness and biocompatibility, cell migration in response to acoustic stimulation remains poorly understood. In this study, we developed a device that is able to apply surface acoustic waves to a cell culture substrate and investigated the effect of propagating acoustic waves on collective cell migration. The migration distance estimated at various wave intensities revealed that unidirectional cell migration was enhanced at a critical wave intensity and that it was suppressed as the intensity was further increased. The increased migration might be attributable to cell orientation alignment along the direction of the propagating wave, as characterized by nucleus shape. Thicker actin bundles indicative of a high traction force were observed in cells subjected to propagating acoustic waves at the critical intensity. Our device and technique can be useful for regulating cellular functions associated with cell migration.

2008 ◽  
Vol 294 (6) ◽  
pp. C1521-C1530 ◽  
Author(s):  
Shuji Kondo ◽  
Yixin Tang ◽  
Elizabeth A. Scheef ◽  
Nader Sheibani ◽  
Christine M. Sorenson

Apoptosis plays a critical role during development and in the maintenance of the vascular system. B-cell leukemia lymphoma 2 (bcl-2) protects endothelial cells (EC) from apoptosis in response to a variety of stimuli. Previous work from this laboratory demonstrated attenuation of postnatal retinal vascular development and retinal neovascularization during oxygen-induced ischemic retinopathy in bcl-2-deficient (bcl-2−/−) mice. To gain further insight into the function of bcl-2 in the endothelium, we isolated retinal EC from bcl-2+/+ and bcl-2−/− mice. Retinal EC lacking bcl-2 demonstrated reduced cell migration, tenascin-C expression, and adhesion to vitronectin and fibronectin. The bcl-2−/− retinal EC also failed to undergo capillary morphogenesis in Matrigel. In addition, using an ex vivo angiogenesis assay, we observed reduced sprouting from aortic rings grown in culture from bcl-2−/− mice compared with bcl-2+/+ mice. Furthermore, reexpression of bcl-2 was sufficient to restore migration and capillary morphogenesis defects observed in bcl-2−/− retinal EC. Mechanistically, bcl-2−/− cells expressed significantly less endothelial nitric oxide synthase, an important downstream effecter of proangiogenic signaling. This may be attributed to increased oxidative stress in the absence of bcl-2. In fact, incubation of retinal EC or aortic rings from bcl-2−/− mice with the antioxidant N-acetylcysteine rescued their capillary morphogenesis and sprouting defects. Thus, bcl-2-mediated cellular functions play important roles not only in survival but also in proangiogenic phenotype of EC with a significant impact on vascular development and angiogenesis.


2019 ◽  
Author(s):  
J. Bui ◽  
D. E. Conway ◽  
R. L. Heise ◽  
S.H. Weinberg

ABSTRACTCell migration, a fundamental physiological process in which cells sense and move through their surrounding physical environment, plays a critical role in development and tissue formation, as well as pathological processes, such as cancer metastasis and wound healing. During cell migration, dynamics are governed by the bidirectional interplay between cell-generated mechanical forces and the activity of Rho GTPases, a family of small GTP-binding proteins that regulate actin cytoskeleton assembly and cellular contractility. These interactions are inherently more complex during the collective migration of mechanically coupled cells, due to the additional regulation of cell-cell junctional forces. In this study, we present a minimal modeling framework to simulate the interactions between mechanochemical signaling in individual cells and interactions with cell-cell junctional forces during collective cell migration. We find that migration of individual cells depends on the feedback between mechanical tension and Rho GTPase activity in a biphasic manner. During collective cell migration, waves of Rho GTPase activity mediate mechanical contraction/extension and thus synchronization throughout the tissue. Further, cell-cell junctional forces exhibit distinct spatial patterns during collective cell migration, with larger forces near the leading edge. Larger junctional force magnitudes are associated with faster collective cell migration and larger tissue size. Simulations of heterogeneous tissue migration exhibit a complex dependence on the properties of both leading and trailing cells. Computational predictions demonstrate that collective cell migration depends on both the emergent dynamics and interactions between cellular-level Rho GTPase activity and contractility, and multicellular-level junctional forces.


2021 ◽  
Author(s):  
Maureen C. Lamb ◽  
Chathuri P. Kaluarachchi ◽  
Thiranjeewa I. Lansakara ◽  
Yiling Lan ◽  
Alexei V. Tivanski ◽  
...  

AbstractA key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This new means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.


2016 ◽  
Vol 49 (6) ◽  
pp. 2073-2081 ◽  
Author(s):  
Ludovic Largeau ◽  
Ibrahima Camara ◽  
Jean-Yves Duquesne ◽  
Catherine Gourdon ◽  
Pauline Rovillain ◽  
...  

Surface acoustic waves of micrometre wavelength travelling on a monocrystal give diffraction satellites around each Bragg peak in an X-ray diffraction diagram. By using a four-crystal monochromator, a secondary two-crystal analyser and masks reducing the footprint to the part of the crystal containing the acoustic modulation, it is possible to observe these satellites on a GaAs (001) surface using a laboratory diffractometer. The finite extension of the satellite diffraction rods and of the crystal truncation rod perpendicular to the surface leads to geometrical correction factors when convoluted with the instrumental resolution function, which had previously been ignored. The calculation of these geometrical correction factors in the framework of the kinematic approximation allows the determination of the surface acoustic wave amplitude, and the study of its attenuation and its dependence on radiofrequency power and duty cycle. The ability to perform such determinations with a laboratory diffractometer should prove useful in optimizing surface acoustic waves, which are presently used in a broad range of condensed matter physics studies.


1996 ◽  
Vol 109 (7) ◽  
pp. 1787-1794 ◽  
Author(s):  
L.A. Cary ◽  
J.F. Chang ◽  
J.L. Guan

Cellular interactions with the extracellular matrix proteins play important roles in a variety of biological processes. Recent studies suggest that integrin-mediated cell-matrix interaction can transduce biochemical signals across the plasma membrane to regulate cellular functions such as proliferation, differentiation and migration. These studies have implicated a critical role of focal adhesion kinase (FAK) in integrin-mediated signal transduction pathways. We report here that overexpression of FAK in CHO cells increased their migration on fibronectin. A mutation of the major autophosphorylation site Y397 in FAK abolished its ability to stimulate cell migration, while phosphorylation of Y397 in a kinase-defective FAK by endogenous FAK led to increased migration. We also find that the wild-type and the kinase-defective FAK were associated with Src and Fyn in CHO cells whereas the F397 mutant was not. These results directly demonstrate a functional role for FAK in integrin signaling leading to cell migration. They also provide evidence for the functional significance of FAK/Src complex formation in vivo.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maureen C Lamb ◽  
Chathuri P Kaluarachchi ◽  
Thiranjeewa I Lansakara ◽  
Samuel Q Mellentine ◽  
Yiling Lan ◽  
...  

A key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This understudied means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.


Author(s):  
Toshiro Ohashi ◽  
Akito Sugawara

Cell migration is essential for a variety of biological and pathological processes such as wound healing, inflammation and tumor metastasis. However, the mechanical environment within a group of cells during collective migration has not been well characterized. In this study, a polydimethylsiloxane (PDMS) multichannel device was fabricated using standard photolithography and soft lithography techniques and was used to monitor cellular traction forces during migration. A migration rate of 5.7 μm/h was measured in microchannels and leading cells in the moving front of the migration generated traction forces with a maximum magnitude of 14 nN at their front side. Traction forces generated by cells behind the leading cells directed forces backward at both the front and rear sides. However, traction forces generated by cells behind the second row had forces in random directions and with smaller magnitudes compared to those on the front and the second row. It is assumed that cells on the front line generated large traction forces and migrated actively as single cells, pulling adjacent cells forward, whereas the cell movement after the third row was restricted by mechanical linkages between their neighboring cells.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

Sign in / Sign up

Export Citation Format

Share Document