scholarly journals Design of a large-range rotary microgripper with freeform geometries using a genetic algorithm

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Chen Wang ◽  
Yuan Wang ◽  
Weidong Fang ◽  
Xiaoxiao Song ◽  
Aojie Quan ◽  
...  

AbstractThis paper describes a novel electrostatically actuated microgripper with freeform geometries designed by a genetic algorithm. This new semiautomated design methodology is capable of designing near-optimal MEMS devices that are robust to fabrication tolerances. The use of freeform geometries designed by a genetic algorithm significantly improves the performance of the microgripper. An experiment shows that the designed microgripper has a large displacement (91.5 μm) with a low actuation voltage (47.5 V), which agrees well with the theory. The microgripper has a large actuation displacement and can handle micro-objects with a size from 10 to 100 μm. A grasping experiment on human hair with a diameter of 77 μm was performed to prove the functionality of the gripper. The result confirmed the superior performance of the new design methodology enabling freeform geometries. This design method can also be extended to the design of many other MEMS devices.

Author(s):  
Timothy Moulton ◽  
G. K. Ananthasuresh

Abstract There exists a need to stabilize the electrostatic actuation commonly used in Micro-Electro-Mechanical Systems (MEMS). Most electrostatically actuated MEMS devices act as variable capacitors with varying gap between the charged conductors. Electrostatic force in these devices is a nonlinear attractive force between the conductors resulting in a complex dynamic system. These systems are stable for only a small portion of the initial gap. In this paper a design method is presented for electrostatic micro-mirrors with improved stability. Controllable, stable electrostatic actuation can be achieved through surface contact between the two conductors. Once in contact with the surface, the compliance of the structure is used to stabilize the electrostatic actuation over a long range of motion. Beam based variable angle mirrors were designed and fabricated using the Multi-User MEMS Process at MCNC technology center. The design methods for stable electrostatic actuation were tested on these mirrors. Some characteristics are noted and their implementation into future designs is discussed.


2014 ◽  
Vol 609-610 ◽  
pp. 825-830 ◽  
Author(s):  
Tao Jiang ◽  
Yun Wei ◽  
Sai Yao ◽  
Jian Zhou

The shock resistance of the MEMS device can be improved by simplifying its structure, but it will reduce accuracy. A commonly implemented solution that strengthens the shock resistance is the use of stopper. However, the collision between MEMS structure and stopper in shock environment may lead to the failure of the device. Hence, stopper should have a fine protection performance. In this study, the design method and principle of the MEMS device in the shock environment were analyzed. It was pointed out that the reliability design methodology of the MEMS device based on statics theory was insufficient. Next, the response of MEMS device to shock was studied and the shock dynamics model was established. Based on the model, the shock response of the traditional design and designs with different stoppers were analyzed. At last, experiments were carried out and the protection performance of different stoppers was evaluated. Results show that the use of stopper can obviously improve the shock resistance of the device. Elastic stopper can strengthen the shock resistance of the device greatly because of the excellent protection ability, while hard stopper may cause the emergence of the sharp stress wave.


Author(s):  
Feng Gao ◽  
Steve Y. Hong ◽  
David W. Rosen

Geometric modeling is an important aspect of MEMS design. It not only creates geometric models for visual evaluation, but also supplies input for device performance analysis. This paper focuses on developing a feature-based geometric design methodology that enables designers to create fabrication-ready 3D models of MEMS devices without concerning the mask layout. Compared with the present geometric design routine, which builds 3D device models through simulating the fabrication process from the photolithography masks, the function-oriented geometric design method allows designers to establish 3D models by using a set of pre-defined volumetric primitives associated with geometric constraints. The fabrication information is derived from the corresponding function-oriented data specified by designers. Hence, designers are released from the down-stream fabrication planning, and can focus on creative design. This research is the application of feature modeling and constraint-based design to the micro world. The workbench of this system is developed on the geometric model kernel ACIS.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yingfeng Zhao ◽  
Jianhua Liu ◽  
Jiangtao Ma ◽  
Linlin Wu

AbstractCurrent studies on cable harness layouts have mainly focused on cable harness route planning. However, the topological structure of a cable harness is also extremely complex, and the branch structure of the cable harness can affect the route of the cable harness layout. The topological structure design of the cable harness is a key to such a layout. In this paper, a novel multi-branch cable harness layout design method is presented, which unites the probabilistic roadmap method (PRM) and the genetic algorithm. First, the engineering constraints of the cable harness layout are presented. An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described. In addition, a new genetic algorithm is proposed, and the algorithm structure of which is redesigned. In addition, the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness. A prototype system of a cable harness layout design was developed based on the method described in this study, and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method. In summary, the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1779
Author(s):  
Wanida Khamprapai ◽  
Cheng-Fa Tsai ◽  
Paohsi Wang ◽  
Chi-En Tsai

Test case generation is an important process in software testing. However, manual generation of test cases is a time-consuming process. Automation can considerably reduce the time required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of the GA to solve the multicast routing problem in network systems. MSGA can be improved to make it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated through comparison with seven different search-based techniques, including random search. All algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The experimental results showed that EMSGA increased the efficiency of testing when compared with conventional algorithms and could detect more faults. Because of its superior performance compared with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby facilitating the development of different software packages.


Author(s):  
John F. McGrew

This paper discusses a case study of a design and evaluation of a change management system at a large Telecommunications Corporation. The design and evaluation were done using the facilitated genetic algorithm (a parallel design method) and user decision style analysis. During the facilitated genetic algorithm the design team followed the procedure of the genetic algorithm. Usability was evaluated by applying user decision style analysis to the designed system. The design is compared with an existing system and with one designed by an analyst. The change management system designed by the facilitated genetic algorithm took less time to design and decision style analysis indicated it would be easier to use than the other two systems.


2013 ◽  
Vol 842 ◽  
pp. 695-702
Author(s):  
Ying Wang ◽  
You Rong Li ◽  
Yu Qiong Zhou

To enlarge production to meet the market demand, its nessasery to improve the present facility layout for MTO (Make-To-Order) manufacturing enterprises. This paper tries to design a optimization method based on genetic algorithm for the facility layout of MTO enterprises. Firstly, SLP (systematic layout planning) was applied to analyze the material and non-material flow interrelation of the workshop. Secondly, a relatively optimum layout was determined after using fuzzy hierarchy estimation to evaluate the schemes. Then the scheme was optimized with genetic algorithm. The result shows that the optimized logistics transport load is obviously less than before. This design method based on genetic algorithm (GA) is proved feasible and effective in the optimization of facility layout.


Sign in / Sign up

Export Citation Format

Share Document