scholarly journals Fermitin family member 2 promotes melanoma progression by enhancing the binding of p-α-Pix to Rac1 to activate the MAPK pathway

Oncogene ◽  
2021 ◽  
Author(s):  
Shaobin Huang ◽  
Wuguo Deng ◽  
Peng Wang ◽  
Yue Yan ◽  
Chuanbo Xie ◽  
...  

AbstractWe identified fermitin family member 2 (FERMT2, also known as kindlin-2) as a potential target in A375 cell line by siRNA library screening. Drugs that target mutant BRAF kinase lack durable efficacy in the treatment of melanoma because of acquired resistance, thus the identification of novel therapeutic targets is needed. Immunohistochemistry was used to identify kindlin-2 expression in melanoma samples. The interaction between kindlin-2 and Rac1 or p-Rac/Cdc42 guanine nucleotide exchange factor 6 (α-Pix) was investigated. Finally, the tumor suppressive role of kindlin-2 was validated in vitro and in vivo. Analysis of clinical samples and Oncomine data showed that higher levels of kindlin-2 predicted a more advanced T stage and M stage and facilitated metastasis and recurrence. Kindlin-2 knockdown significantly inhibited melanoma growth and migration, whereas kindlin-2 overexpression had the inverse effects. Further study showed that kindlin-2 could specifically bind to p-α-Pix(S13) and Rac1 to induce a switch from the inactive Rac1-GDP conformation to the active Rac1-GTP conformation and then stimulate the downstream MAPK pathway. Moreover, we revealed that a Rac1 inhibitor suppressed melanoma growth and metastasis and the combination of the Rac1 inhibitor and vemurafenib resulted in a better therapeutic outcome than monotherapy in melanoma with high kindlin-2 expression and BRAF mutation. Our results demonstrated that kindlin-2 promoted melanoma progression, which was attributed to specific binding to p-α-Pix(S13) and Rac1 to stimulate the downstream MAPK pathway. Thus, kindlin-2 could be a potential therapeutic target for treating melanoma.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


2020 ◽  
Author(s):  
Wahafu Alafate ◽  
Dongze Xu ◽  
Wei Wu ◽  
Jianyang Xiang ◽  
Xudong Ma ◽  
...  

Abstract BackgroundGlioblastoma (GBM) is a lethal type of primary brain tumor with a median survival less than 15 months. Despite the recent improvements of comprehensive strategies, the outcomes for GBM patients remain dismal. Accumulating evidence indicates that rapid acquired chemoresistance is the major cause of GBM recurrence thus leads to worse clinical outcomes. Therefore, developing novel biomarkers and therapeutic targets for chemoresistant GBM is crucial for long-term cures. MethodsTranscriptomic profiles of glioblastoma were downloaded from gene expression omnibus (GEO) and TCGA database. Differentially expressed genes were analyzed and candidate gene PLK2 was selected for subsequent validation. Clinical samples and corresponding data were collected from our center and measured using immunohistochemistry analysis. Lentiviral transduction and in vivo xenograft transplantation were used to validate the bioinformatic findings. GSEA analyses were conducted to identify potential signaling pathways related to PLK2 expression and further confirmed by in vitro mechanistic assays. ResultsIn this study, we identified PLK2 as an extremely suppressed kinase-encoding gene in GBM samples, particularly in therapy resistant GBM. Additionally, reduced PLK2 expression implied poor prognosis and TMZ resistance in GBM patients. Functionally, up-regulated PLK2 attenuated cell proliferation, migration, invasion, and tumorigenesis of GBM cells. Besides, exogenous overexpression of PLK2 reduced acquired TMZ resistance of GBM cells. Furthermore, bioinformatics analysis indicated that PLK2 was negatively correlated with Notch signaling pathway in GBM. Mechanically, loss of PLK2 activated Notch pathway through negative transcriptional regulation of HES1 and degradation of Notch1.ConclusionLoss of PLK2 enhances aggressive biological behavior of GBM through activation of Notch signaling, indicating that PLK2 could be a prognostic biomarker and potential therapeutic target for chemoresistant GBM.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Junjie Xu ◽  
Zhe Wan ◽  
Minyue Tang ◽  
Zhongjie Lin ◽  
Shi Jiang ◽  
...  

Abstract Background and aims Accumulating evidence suggests that the primary and acquired resistance of hepatocellular carcinoma (HCC) to sorafenib is mediated by multiple molecular, cellular, and microenvironmental mechanisms. Understanding these mechanisms will enhance the likelihood of effective sorafenib therapy. Methods In vitro and in vivo experiments were performed and clinical samples and online databases were acquired for clinical investigation. Results In this study, we found that a circular RNA, circRNA-SORE, which is up-regulated in sorafenib-resistant HCC cells, was necessary for the maintenance of sorafenib resistance, and that silencing circRNA-SORE substantially increased the efficacy of sorafenib-induced apoptosis. Mechanistic studies determined that circRNA-SORE sequestered miR-103a-2-5p and miR-660-3p by acting as a microRNA sponge, thereby competitively activating the Wnt/β-catenin pathway and inducing sorafenib resistance. The increased level of circRNA-SORE in sorafenib-resistant cells resulted from increased RNA stability. This was caused by an increased level of N6-methyladenosine (m6A) at a specific adenosine in circRNA-SORE. In vivo delivery of circRNA-SORE interfering RNA by local short hairpin RNA lentivirus injection substantially enhanced sorafenib efficacy in animal models. Conclusions This work indicates a novel mechanism for maintaining sorafenib resistance and is a proof-of-concept study for targeting circRNA-SORE in sorafenib-treated HCC patients as a novel pharmaceutical intervention for advanced HCC.


Author(s):  
Wahafu Alafate ◽  
Dongze Xu ◽  
Wei Wu ◽  
Jianyang Xiang ◽  
Xudong Ma ◽  
...  

Abstract Background Glioblastoma (GBM) is a lethal type of primary brain tumor with a median survival less than 15 months. Despite the recent improvements of comprehensive strategies, the outcomes for GBM patients remain dismal. Accumulating evidence indicates that rapid acquired chemoresistance is the major cause of GBM recurrence thus leads to worse clinical outcomes. Therefore, developing novel biomarkers and therapeutic targets for chemoresistant GBM is crucial for long-term cures. Methods Transcriptomic profiles of glioblastoma were downloaded from gene expression omnibus (GEO) and TCGA database. Differentially expressed genes were analyzed and candidate gene PLK2 was selected for subsequent validation. Clinical samples and corresponding data were collected from our center and measured using immunohistochemistry analysis. Lentiviral transduction and in vivo xenograft transplantation were used to validate the bioinformatic findings. GSEA analyses were conducted to identify potential signaling pathways related to PLK2 expression and further confirmed by in vitro mechanistic assays. Results In this study, we identified PLK2 as an extremely suppressed kinase-encoding gene in GBM samples, particularly in therapy resistant GBM. Additionally, reduced PLK2 expression implied poor prognosis and TMZ resistance in GBM patients. Functionally, up-regulated PLK2 attenuated cell proliferation, migration, invasion, and tumorigenesis of GBM cells. Besides, exogenous overexpression of PLK2 reduced acquired TMZ resistance of GBM cells. Furthermore, bioinformatics analysis indicated that PLK2 was negatively correlated with Notch signaling pathway in GBM. Mechanically, loss of PLK2 activated Notch pathway through negative transcriptional regulation of HES1 and degradation of Notch1. Conclusion Loss of PLK2 enhances aggressive biological behavior of GBM through activation of Notch signaling, indicating that PLK2 could be a prognostic biomarker and potential therapeutic target for chemoresistant GBM.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with DIPG remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial (BIOMEDE), we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1. Treatment of PDX models and the patient with trametinib at relapse, however, failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, with overexpression of key proteins involved in invasion/migration, such as collagen-family proteins, integrins, MMPs and AHNAK2, amongst others. Resistant clones were conversely sensitive to the upstream receptor tyrosine kinase inhibitor dasatinib (GI50 36-93nM), and combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


Author(s):  
S. Napolitano ◽  
N. Matrone ◽  
A. L. Muddassir ◽  
G. Martini ◽  
A. Sorokin ◽  
...  

Abstract Background Molecular mechanisms driving acquired resistance to anti-EGFR therapies in metastatic colorectal cancer (mCRC) are complex but generally involve the activation of the downstream RAS-RAF-MEK-MAPK pathway. Nevertheless, even if inhibition of EGFR and MEK could be a strategy for overcoming anti-EGFR resistance, its use is limited by the development of MEK inhibitor (MEKi) resistance. Methods We have generated in vitro and in vivo different CRC models in order to underline the mechanisms of MEKi resistance. Results The three different in vitro MEKi resistant models, two generated by human CRC cells quadruple wild type for KRAS, NRAS, BRAF, PI3KCA genes (SW48-MR and LIM1215-MR) and one by human CRC cells harboring KRAS mutation (HCT116-MR) showed features related to the gene signature of colorectal cancer CMS4 with up-regulation of immune pathway as confirmed by microarray and western blot analysis. In particular, the MEKi phenotype was associated with the loss of epithelial features and acquisition of mesenchymal markers and morphology. The change in morphology was accompanied by up-regulation of PD-L1 expression and activation of EGFR and its downstream pathway, independently to RAS mutation status. To extend these in vitro findings, we have obtained mouse colon cancer MC38- and CT26-MEKi resistant syngeneic models (MC38-MR and CT26-MR). Combined treatment with MEKi, EGFR inhibitor (EGFRi) and PD-L1 inhibitor (PD-L1i) resulted in a marked inhibition of tumor growth in both models. Conclusions These results suggest a strategy to potentially improve the efficacy of MEK inhibition by co-treatment with EGFR and PD-L1 inhibitors via modulation of host immune responses.


2016 ◽  
Vol 113 (47) ◽  
pp. 13456-13461 ◽  
Author(s):  
Ross A. Okimoto ◽  
Luping Lin ◽  
Victor Olivas ◽  
Elton Chan ◽  
Evan Markegard ◽  
...  

Oncogenic activation of protein kinaseBRAFdrives tumor growth by promoting mitogen-activated protein kinase (MAPK) pathway signaling. Because oncogenic mutations inBRAFoccur in ∼2–7% of lung adenocarcinoma (LA),BRAF-mutant LA is the most frequent cause ofBRAF-mutant cancer mortality worldwide. Whereas most tumor types harbor predominantly theBRAFV600E-mutant allele, the spectrum ofBRAFmutations in LA includesBRAFV600E(∼60% of cases) and non-V600E mutant alleles (∼40% of cases) such asBRAFG469AandBRAFG466V. The presence ofBRAFV600Ein LA has prompted clinical trials testing selective BRAF inhibitors such as vemurafenib inBRAFV600E-mutant patients. Despite promising clinical efficacy, both innate and acquired resistance often result from reactivation of MAPK pathway signaling, thus limiting durable responses to the current BRAF inhibitors. Further, the optimal therapeutic strategy to block non-V600EBRAF-mutant LA remains unclear. Here, we report the efficacy of the Raf proto-oncogene serine/threonine protein kinase (RAF) inhibitor, PLX8394, that evades MAPK pathway reactivation inBRAF-mutant LA models. We show that PLX8394 treatment is effective in bothBRAFV600Eand certain non-V600 LA models, in vitro and in vivo. PLX8394 was effective against treatment-naiveBRAF-mutant LAs and those with acquired vemurafenib resistance caused by an alternatively spliced, truncatedBRAFV600Ethat promotes vemurafenib-insensitive MAPK pathway signaling. We further show that acquired PLX8394 resistance occurs via EGFR-mediated RAS-mTOR signaling and is prevented by upfront combination therapy with PLX8394 and either an EGFR or mTOR inhibitor. Our study provides a biological rationale and potential polytherapy strategy to aid the deployment of PLX8394 in lung cancer patients.


2020 ◽  
Author(s):  
Wahafu Alafate ◽  
Dongze Xu ◽  
Wei Wu ◽  
Jianyang Xiang ◽  
Xudong Ma ◽  
...  

Abstract BackgroundGlioblastoma (GBM) isa lethal type of primary brain tumor with a median survival less than 15 months.Despiting the recent improvements of comprehensive strategies,the outcomes for GBM patients remain dismal.Accumulating evidence indicates that rapid acquired chemoresistance is the major cause ofGBM recurrence thus leads to worse clinical outcomes. Therefore, developing novel biomarkers and therapeutic targets for chemoresistant GBM is crucial for long-term cures. MethodsTranscriptomic profiles of glioblastoma were downloaded from gene expression omnibus (GEO) and TCGA database. Differentially expressed genes were analyzed and candidate gene PLK2 was selected for subsequent validation. Clinical samples and corresponding data were collected from our center and measured using immunohistochemistry analysis. Lentiviral transduction and in vivo xenograft transplantation were used to validate the bioinformatic findings. GSEA analyses were conducted to identify potential signaling pathways related to PLK2 expression and further confirmed by in vitro mechanistic assays. ResultsIn this study, we identified PLK2 as an extremely suppressed kinase-encoding gene in GBM samples, particularly in therapy resistant GBM. Additionally, reduced PLK2 expression implied poor prognosis and TMZ resistance in GBM patients. Functionally, up-regulated PLK2 attenuated cell proliferation, immigration, invasion, and tumorigenesis of GBM cells. Besides, exogenous overexpression of PLK2 reduced acquired TMZ resistance of GBM cells. Furthermore, bioinformatics analysis indicated that PLK2 was negatively correlated with Notch signaling pathway in GBM. Mechanically, loss of PLK2 activated Notch pathway through negative transcriptional regulation of HES1 and degradation of Notch1.ConclusionLoss of PLK2 enhances aggressive biological behavior of GBM through activation of Notch signaling, indicating that PLK2 could be a prognostic biomarker and potential therapeutic target for chemoresistant GBM.


2020 ◽  
Author(s):  
Thomas F Eleveld ◽  
Lindy Vernooij ◽  
Linda Schild ◽  
Bianca Koopmans ◽  
Lindy K Alles ◽  
...  

AbstractMutations affecting the RAS-MAPK pathway occur frequently in relapsed neuroblastoma tumors and are associated with response to MEK inhibition in vitro. However, these inhibitors alone do not lead to tumor regression in vivo, indicating the need for combination therapy. Through high throughput combination screening we identify Trametinib and inhibitors of the BCL2 family (Navitoclax and Venetoclax) as a promising combination in neuroblastoma cells with RAS-MAPK mutations. In these lines, inhibiting the RAS-MAPK pathway leads to Bim stabilization and increased sensitivity to compounds inhibiting Bim binding to Bcl2 family members. Combining Trametinib with BCL2 inhibitors causes increased growth inhibition compared to Trametinib only in NRAS mutant SKNAS xenografts, while BCL2 inihibitors alone do not affect growth of these tumors. These results show that MEK inhibitors and specific Bcl2 family member inhibitors are a potent combination for RAS-MAPK mutated neuroblastoma tumors.


2015 ◽  
Vol 16 (S1) ◽  
Author(s):  
Sandeep Dhayade ◽  
Susanne Feil ◽  
Anja Ulmer ◽  
Susanne Kaesler ◽  
Tobias Sinnberg ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document