scholarly journals TRPC1 promotes the genesis and progression of colorectal cancer via activating CaM-mediated PI3K/AKT signaling axis

Oncogenesis ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Yang Sun ◽  
Chen Ye ◽  
Wen Tian ◽  
Wen Ye ◽  
Yuan-Yuan Gao ◽  
...  

AbstractTransient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.

2020 ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

Abstract Background: Lamin B2 (LMNB2) is involved in chromatin remodelling and the rupture and reorganization of the nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, there are few reports on the expression and function of LMNB2 in colorectal cancer.Methods: A tissue microarray (TAM) was used to detect the expression of LMNB2 in 226 colorectal cancer tissues and the corresponding adjacent tissues. The CCK-8 colorimetric assay, EdU incorporation analyses, colony formation assays and cell cycle experiments were used to evaluate the effect of LMNB2 on colorectal cancer cell proliferation in vitro, and a mouse tumorigenic model was used to study the effect of LMNB2 on colorectal cancer cells in vivo. The main pathways and genes regulated by LMNB2 were detected by RNA sequencing. Dual-luciferase reporter assays were conducted to test the direct binding between LMNB2 and p21, and ChIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter.Results: The results showed that LMNB2 expression is increased in colorectal cancer tissues. Highly expressed LMNB2 is associated with tumour size and TNM stage. Multivariate Cox analysis showed that LMNB2 can be used as an independent prognostic factor in patients with colorectal cancer. Functional assays indicated that LMNB2 obviously enhanced cell proliferation by promoting cell cycle progression in vitro and in vivo. LMNB2 facilitates cell proliferation via regulating the p21 promoter, whereas LMNB2 had no effect on cell apoptosis in terms of mechanism.Conclusion: LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, indicating the potential value of LMNB2 as a clinical prognostic marker and molecular therapeutic target.


2019 ◽  
Author(s):  
Jie Sun ◽  
Di Wang ◽  
Yu Zhang ◽  
Qing Mu ◽  
Mei Li ◽  
...  

Abstract Background Compound Kushen Injection (CKI) has been clinically used in China for 15 years to treat various types of solid tumors, including colorectal cancer. Here we examine cell cycle arrest, induced autophagy, and mutant p53 pathways perturbed by CKI in colorectal cancer cells. We and other groups have shown that CKI alters p53 gene expression patterns and suppresses proliferation in colorectal cancer cells. Methods We measured the effect of CKI on cell proliferation, cell cycle progression and autophagy in sw480 and sw620 colorectal cancer cells in vitro, and carcinogenesis and the progression of azoxymethane/dextran sodium sulfate-induced colorectal cancer in ICR mice in vivo. We also used RNA sequencing to analyze mRNA expression altered by CKI, and further validated the expression of mutant p53 and several genes in the cell cycle pathway using reverse transcriptase-quantitative PCR and western blotting. Using network pharmacology (BATMAN-TCM database), we have also predicted the active ingredients in CKI involved in regulating the expression of mutant p53. Results We show evidence that CKI significantly suppressed proliferation and cell cycle progression, and induced autophagy of sw480 and sw620 cells in vitro; it also inhibited the development of inflammatory colorectal cancer in vivo. We also show that the down-regulated expression of mutant p53 and adjustments in several key genes related closely to cell-cycle progression. Furthermore, N-oxysophocarpine, lupenone, and geranylacetone were predicted to be the active ingredients of CKI involved in the down-regulated expression of mutant p53. Conclusion Our results indicate that CKI likely acts as a potential anti-cancer therapeutic agent that targets the cell cycle pathway, suggesting a key role in the development of a novel subsidiary therapeutic approach against mutant p53 in patients with colorectal cancer.


Author(s):  
Ran Zhao ◽  
Yukun Liu ◽  
Chunchun Wu ◽  
Mengna Li ◽  
Yanmei Wei ◽  
...  

BRD7 functions as a crucial tumor suppressor in numerous malignancies. However, the effects of BRD7 on colorectal cancer (CRC) progression are still unknown. Here, based on the BRD7 knockout (BRD7–/–) and BRD7flox/flox (BRD7+/+) mouse models constructed in our previous work, we established an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse model. BRD7+/+ mice were found to be highly susceptible to AOM/DSS-induced colitis-associated CRC, and BRD7 significantly promoted cell proliferation and cell cycle G1/S transition but showed no significant effect on cell apoptosis. Furthermore, BRD7 interacted with c-Myc and stabilized c-Myc by inhibiting its ubiquitin–proteasome-dependent degradation. Moreover, restoring the expression of c-Myc in BRD7-silenced CRC cells restored cell proliferation, cell cycle progression, and tumor growth in vitro and in vivo. In addition, BRD7 and c-Myc were both significantly upregulated in CRC patients, and high expression of these proteins was associated with clinical stage and poor prognosis in CRC patients. Collectively, BRD7 functions as an oncogene and promotes CRC progression by regulating the ubiquitin–proteasome-dependent stabilization of c-Myc protein. Targeting the BRD7/c-Myc axis could be a potential therapeutic strategy for CRC.


Author(s):  
Aling Shen ◽  
Liya Liu ◽  
Yue Huang ◽  
Zhiqing Shen ◽  
Meizhu Wu ◽  
...  

Background: HAUS6 participates in microtubule-dependent microtubule amplification, but its role in malignancies including colorectal cancer (CRC) has not been explored. We therefore assessed the potential oncogenic activities of HAUS6 in CRC.Results: HAUS6 mRNA and protein expression is higher in CRC tissues, and high HAUS6 expression is correlated with shorter overall survival in CRC patients. HAUS6 knockdown in CRC cell lines suppressed cell growth in vitro and in vivo by inhibiting cell viability, survival and arresting cell cycle progression at G0/G1, while HAUS6 over-expression increased cell viability. We showed that these effects are dependent on activation of the p53/p21 signalling pathway by reducing p53 and p21 degradation. Moreover, combination of HAUS6 knockdown and 5-FU treatment further enhanced the suppression of cell proliferation of CRC cells by increasing activation of the p53/p21 pathway.Conclusion: Our study highlights a potential oncogenic role for HAUS6 in CRC. Targeting HAUS6 may be a promising novel prognostic marker and chemotherapeutic target for treating CRC patients.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.


2017 ◽  
Vol 4 (S) ◽  
pp. 98
Author(s):  
P H Nguyen ◽  
J Giraud ◽  
C Staedel ◽  
L Chambonnier ◽  
P Dubus ◽  
...  

Gastric carcinoma is the third leading cause of cancer-related death worldwide. This cancer, most of the time metastatic, is essentially treated by surgery associated with conventional chemotherapy, and has a poor prognosis. The existence of cancer stem cells (CSC) expressing CD44 and a high aldehyde dehydrogenase (ALDH) activity has recently been demonstrated in gastric carcinoma and has opened new perspectives to develop targeted therapy. In this study, we evaluated the effects of all-transretinoic acid (ATRA) on CSCs in human gastric carcinoma. ATRA effects were evaluated on the proliferation and tumorigenic properties of gastric carcinoma cells from patient-derived tumors and cell lines in conventional 2D cultures, in 3D culture systems (tumorsphere assay) and in mouse xenograft models. ATRA inhibited both tumorspheres initiation and growth in vitro, which was associated with a cell-cycle arrest through the upregulation of cyclin-dependent kinase (CDK) inhibitors and the downregulation of cell-cycle progression activators. More importantly, ATRA downregulated the expression of the CSC markers CD44 and ALDH as well as stemness genes such as Klf4 and Sox2 and induced differentiation of tumorspheres. Finally, 2 weeks of daily ATRA treatment were sufficient to inhibit gastric tumor progression in vivo, which was associated with a decrease in CD44, ALDH1, Ki67 and PCNA expression in the remaining tumor cells. Administration of ATRA appears to be a potent strategy to efficiently inhibit tumor growth and more importantly to target gastric CSCs in both intestinal and diffuse types of gastric carcinoma.


2002 ◽  
Vol 13 (9) ◽  
pp. 3178-3191 ◽  
Author(s):  
Smita Abbi ◽  
Hiroki Ueda ◽  
Chuanhai Zheng ◽  
Lee Ann Cooper ◽  
Jihe Zhao ◽  
...  

Focal adhesion kinase (FAK) is a major mediator of integrin signaling pathways. The mechanisms of regulation of FAK activity and its associated cellular functions are not very well understood. Here, we present data suggesting that a novel protein FIP200 functions as an inhibitor for FAK. We show the association of endogenous FIP200 with FAK, which is decreased upon integrin-mediated cell adhesion concomitant with FAK activation. In vitro- and in vivo-binding studies indicate that FIP200 interacts with FAK through multiple domains directly. FIP200 bound to the kinase domain of FAK inhibited its kinase activity in vitro and its autophosphorylation in vivo. Overexpression of FIP200 or its segments inhibited cell spreading, cell migration, and cell cycle progression, which correlated with their inhibition of FAK activity in vivo. The inhibition of these cellular functions by FIP200 could be rescued by coexpression of FAK. Last, we show that disruption of the functional interaction between endogenous FIP200 with FAK leads to increased FAK phosphorylation and partial restoration of cell cycle progression in cells plated on poly-l-lysine, providing further support for FIP200 as a negative regulator of FAK. Together, these results identify FIP200 as a novel protein inhibitor for FAK.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.


Sign in / Sign up

Export Citation Format

Share Document