scholarly journals Genetic liability to rheumatoid arthritis on autism and autistic traits: polygenic risk score and Mendelian randomization analyses

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Amanda Ly ◽  
Beate Leppert ◽  
Dheeraj Rai ◽  
Hannah Jones ◽  
Christina Dardani ◽  
...  

AbstractHigher prevalence of autism in offspring born to mothers with rheumatoid arthritis has been reported in observational studies. We investigated (a) the associations between maternal and offspring’s own genetic liability for rheumatoid arthritis and autism-related outcomes in the offspring using polygenic risk scores (PRS) and (b) whether the effects were causal using Mendelian randomization (MR). Using the latest genome-wide association (GWAS) summary data on rheumatoid arthritis and individual-level data from the Avon Longitudinal Study of Parents and Children, United Kingdom, we constructed PRSs for maternal and offspring genetic liability for rheumatoid arthritis (single-nucleotide polymorphism [SNP] p-value threshold 0.05). We investigated associations with autism, and autistic traits: social and communication difficulties, coherence, repetitive behaviours and sociability. We used modified Poisson regression with robust standard errors. In two-sample MR analyses, we used 40 genome-wide significant SNPs for rheumatoid arthritis and investigated the causal effects on risk for autism, in 18,381 cases and 27,969 controls of the Psychiatric Genetics Consortium and iPSYCH. Sample size ranged from 4992 to 7849 in PRS analyses. We found little evidence of associations between rheumatoid arthritis PRSs and autism-related phenotypes in the offspring (maternal PRS on autism: RR 0.89, 95%CI 0.73–1.07, p = 0.21; offspring’s own PRS on autism: RR 1.11, 95%CI 0.88–1.39, p = 0.39). MR results provided little evidence for a causal effect (IVW OR 1.01, 95%CI 0.98–1.04, p = 0.56). There was little evidence for associations between genetic liability for rheumatoid arthritis on autism-related outcomes in offspring. Lifetime risk for rheumatoid arthritis has no causal effects on autism.

2020 ◽  
Author(s):  
Liu Miao ◽  
Yan Min ◽  
Chuan-Meng Zhu ◽  
Jian-Hong Chen ◽  
Bin Qi ◽  
...  

Abstract Background/Aims: While observational studies show an association between serum lipid levels and cardiovascular disease (CVD), intervention studies that examine the preventive effects of serum lipid levels on the development of CKD are lacking. Methods: To estimate the role of serum lipid levels in the etiology of CKD, we conducted a two-sample Mendelian randomization (MR) study on serum lipid levels. Single nucleotide polymorphisms (SNPs), which were significantly associated genome-wide with plasma serum lipid levels from the GLGC and CKDGen consortium genome-wide association study (GWAS), including total cholesterol (TC, n = 187365), triglyceride (TG, n = 177861), HDL cholesterol (HDL-C, n = 187167), LDL cholesterol (LDL-C, n = 173082), apolipoprotein A1 (ApoA1, n = 20687), apolipoprotein B (ApoB, n = 20690) and CKD (n = 117165), were used as instrumental variables. None of the lipid-related SNPs was associated with CKD (all P > 0.05). Results: MR analysis genetically predicted the causal effect between TC/HDL-C and CKD. The odds ratio (OR) and 95% confidence interval (CI) of TC within CKD was 0.756 (0.579 to 0.933) (P = 0.002), and HDL-C was 0.85 (0.687 to 1.012) (P = 0.049). No causal effects between TG, LDL-C- ApoA1, ApoB and CKD were observed. Sensitivity analyses confirmed that TC and HDL-C were significantly associated with CKD. Conclusions: The findings from this MR study indicate causal effects between TC, HDL-C and CKD. Decreased TC and elevated HDL-C may reduce the incidence of CKD but need to be further confirmed by using a genetic and environmental approach.


2018 ◽  
Author(s):  
Tom G. Richardson ◽  
Sean Harrison ◽  
Gibran Hemani ◽  
George Davey Smith

AbstractThe age of large-scale genome-wide association studies (GWAS) has provided us with an unprecedented opportunity to evaluate the genetic liability of complex disease using polygenic risk scores (PRS). In this study, we have analysed 162 PRS (P<5×l0 05) derived from GWAS and 551 heritable traits from the UK Biobank study (N=334,398). Findings can be investigated using a web application (http://mrcieu.mrsoftware.org/PRS_atlas/), which we envisage will help uncover both known and novel mechanisms which contribute towards disease susceptibility.To demonstrate this, we have investigated the results from a phenome-wide evaluation of schizophrenia genetic liability. Amongst findings were inverse associations with measures of cognitive function which extensive follow-up analyses using Mendelian randomization (MR) provided evidence of a causal relationship. We have also investigated the effect of multiple risk factors on disease using mediation and multivariable MR frameworks. Our atlas provides a resource for future endeavours seeking to unravel the causal determinants of complex disease.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 1528-1528
Author(s):  
Heena Desai ◽  
Anh Le ◽  
Ryan Hausler ◽  
Shefali Verma ◽  
Anurag Verma ◽  
...  

1528 Background: The discovery of rare genetic variants associated with cancer have a tremendous impact on reducing cancer morbidity and mortality when identified; however, rare variants are found in less than 5% of cancer patients. Genome wide association studies (GWAS) have identified hundreds of common genetic variants significantly associated with a number of cancers, but the clinical utility of individual variants or a polygenic risk score (PRS) derived from multiple variants is still unclear. Methods: We tested the ability of polygenic risk score (PRS) models developed from genome-wide significant variants to differentiate cases versus controls in the Penn Medicine Biobank. Cases for 15 different cancers and cancer-free controls were identified using electronic health record billing codes for 11,524 European American and 5,994 African American individuals from the Penn Medicine Biobank. Results: The discriminatory ability of the 15 PRS models to distinguish their respective cancer cases versus controls ranged from 0.68-0.79 in European Americans and 0.74-0.93 in African Americans. Seven of the 15 cancer PRS trended towards an association with their cancer at a p<0.05 (Table), and PRS for prostate, thyroid and melanoma were significantly associated with their cancers at a bonferroni corrected p<0.003 with OR 1.3-1.6 in European Americans. Conclusions: Our data demonstrate that common variants with significant associations from GWAS studies can distinguish cancer cases versus controls for some cancers in an unselected biobank population. Given the small effects, future studies are needed to determine how best to incorporate PRS with other risk factors in the precision prediction of cancer risk. [Table: see text]


2020 ◽  
Author(s):  
Panagiota Pagoni ◽  
Christina Dardani ◽  
Beate Leppert ◽  
Roxanna Korologou-Linden ◽  
George Davey Smith ◽  
...  

ABSTRACTBackgroundThere are very few studies investigating possible links between Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD) and Alzheimer’s disease and these have been limited by small sample sizes, diagnostic and recall bias. However, neurocognitive deficits affecting educational attainment in individuals with ADHD could be risk factors for Alzheimer’s later in life while hyper plasticity of the brain in ASD and strong positive genetic correlations of ASD with IQ and educational attainment could be protective against Alzheimer’s.MethodsWe estimated the bidirectional total causal effects of genetic liability to ADHD and ASD on Alzheimer’s disease through two-sample Mendelian randomization. We investigated their direct effects, independent of educational attainment and IQ, through Multivariable Mendelian randomization.ResultsThere was limited evidence to suggest that genetic liability to ADHD (OR=1.00, 95% CI: 0.98 to 1.02, p=0.39) or ASD (OR=0.99, 95% CI: 0.97 to 1.01, p=0.70) was associated with risk of Alzheimer’s disease. Similar causal effect estimates were identified when the direct effects, independent of educational attainment (ADHD: OR=1.00, 95% CI: 0.99 to 1.01, p=0.07; ASD: OR=0.99, 95% CI: 0.98 to 1.00, p=0.28) and IQ (ADHD: OR=1.00, 95% CI: 0.99 to 1.02. p=0.29; ASD: OR=0.99, 95% CI: 0.98 to 1.01, p=0.99), were assessed. Finally, genetic liability to Alzheimer’s disease was not found to have a causal effect on risk of ADHD or ASD (ADHD: OR=1.12, 95% CI: 0.86 to 1.44, p=0.37; ASD: OR=1.19, 95% CI: 0.94 to 1.51, p=0.14).ConclusionsIn the first study to date investigating the causal associations between genetic liability to ADHD, ASD and Alzheimer’s, within an MR framework, we found limited evidence to suggest a causal effect. It is important to encourage future research using ADHD and ASD specific subtype data, as well as longitudinal data in order to further elucidate any associations between these conditions.


2021 ◽  
Author(s):  
Paul O’Reilly ◽  
Shing Choi ◽  
Judit Garcia-Gonzalez ◽  
Yunfeng Ruan ◽  
Hei Man Wu ◽  
...  

Abstract Polygenic risk scores (PRSs) have been among the leading advances in biomedicine in recent years. As a proxy of genetic liability, PRSs are utilised across multiple fields and applications. While numerous statistical and machine learning methods have been developed to optimise their predictive accuracy, all of these distil genetic liability to a single number based on aggregation of an individual’s genome-wide alleles. This results in a key loss of information about an individual’s genetic profile, which could be critical given the functional sub-structure of the genome and the heterogeneity of complex disease. Here we evaluate the performance of pathway-based PRSs, in which polygenic scores are calculated across genomic pathways for each individual, and we introduce a software, PRSet, for computing and analysing pathway PRSs. We find that pathway PRSs have similar power for evaluating pathway enrichment of GWAS signal as the leading methods, with the distinct advantage of providing estimates of pathway genetic liability at the individual-level. Exemplifying their utility, we demonstrate that pathway PRSs can stratify diseases into subtypes in the UK Biobank with substantially greater power than genome-wide PRSs. Compared to genome-wide PRSs, we expect pathway-based PRSs to offer greater insights into the heterogeneity of complex disease and treatment response, generate more biologically tractable therapeutic targets, and provide a more powerful path to precision medicine.


2019 ◽  
Vol 48 (5) ◽  
pp. 1425-1434 ◽  
Author(s):  
Xiangrui Meng ◽  
Xue Li ◽  
Maria N Timofeeva ◽  
Yazhou He ◽  
Athina Spiliopoulou ◽  
...  

Abstract Background Vitamin D deficiency is highly prevalent across the globe. Existing studies suggest that a low vitamin D level is associated with more than 130 outcomes. Exploring the causal role of vitamin D in health outcomes could support or question vitamin D supplementation. Methods We carried out a systematic literature review of previous Mendelian-randomization studies on vitamin D. We then implemented a Mendelian Randomization–Phenome Wide Association Study (MR-PheWAS) analysis on data from 339 256 individuals of White British origin from UK Biobank. We first ran a PheWAS analysis to test the associations between a 25(OH)D polygenic risk score and 920 disease outcomes, and then nine phenotypes (i.e. systolic blood pressure, diastolic blood pressure, risk of hypertension, T2D, ischaemic heart disease, body mass index, depression, non-vertebral fracture and all-cause mortality) that met the pre-defined inclusion criteria for further analysis were examined by multiple MR analytical approaches to explore causality. Results The PheWAS analysis did not identify any health outcome associated with the 25(OH)D polygenic risk score. Although a selection of nine outcomes were reported in previous Mendelian-randomization studies or umbrella reviews to be associated with vitamin D, our MR analysis, with substantial study power (>80% power to detect an association with an odds ratio >1.2 for per standard deviation increase of log-transformed 25[OH]D), was unable to support an interpretation of causal association. Conclusions We investigated the putative causal effects of vitamin D on multiple health outcomes in a White population. We did not support a causal effect on any of the disease outcomes tested. However, we cannot exclude small causal effects or effects on outcomes that we did not have enough power to explore due to the small number of cases.


Author(s):  
Alexander L Richards ◽  
Antonio F Pardiñas ◽  
Aura Frizzati ◽  
Katherine E Tansey ◽  
Amy J Lynham ◽  
...  

Abstract Background Cognitive impairment is a clinically important feature of schizophrenia. Polygenic risk score (PRS) methods have demonstrated genetic overlap between schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), educational attainment (EA), and IQ, but very few studies have examined associations between these PRS and cognitive phenotypes within schizophrenia cases. Methods We combined genetic and cognitive data in 3034 schizophrenia cases from 11 samples using the general intelligence factor g as the primary measure of cognition. We used linear regression to examine the association between cognition and PRS for EA, IQ, schizophrenia, BD, and MDD. The results were then meta-analyzed across all samples. A genome-wide association studies (GWAS) of cognition was conducted in schizophrenia cases. Results PRS for both population IQ (P = 4.39 × 10–28) and EA (P = 1.27 × 10–26) were positively correlated with cognition in those with schizophrenia. In contrast, there was no association between cognition in schizophrenia cases and PRS for schizophrenia (P = .39), BD (P = .51), or MDD (P = .49). No individual variant approached genome-wide significance in the GWAS. Conclusions Cognition in schizophrenia cases is more strongly associated with PRS that index cognitive traits in the general population than PRS for neuropsychiatric disorders. This suggests the mechanisms of cognitive variation within schizophrenia are at least partly independent from those that predispose to schizophrenia diagnosis itself. Our findings indicate that this cognitive variation arises at least in part due to genetic factors shared with cognitive performance in populations and is not solely due to illness or treatment-related factors, although our findings are consistent with important contributions from these factors.


2017 ◽  
Author(s):  
Sarah M. Hartz ◽  
Amy Horton ◽  
Mary Oehlert ◽  
Caitlin E. Carey ◽  
Arpana Agrawal ◽  
...  

AbstractBackgroundThere are high levels of comorbidity between schizophrenia and substance use disorder, but little is known about the genetic etiology of this comorbidity.MethodsHere, we test the hypothesis that shared genetic liability contributes to the high rates of comorbidity between schizophrenia and substance use disorder. To do this, polygenic risk scores for schizophrenia derived from a large meta-analysis by the Psychiatric Genomics Consortium were computed in three substance use disorder datasets: COGEND (ascertained for nicotine dependence n=918 cases, 988 controls), COGA (ascertained for alcohol dependence n=643 cases, 384 controls), and FSCD (ascertained for cocaine dependence n=210 cases, 317 controls). Phenotypes were harmonized across the three datasets and standardized analyses were performed. Genome-wide genotypes were imputed to 1000 Genomes reference panel.ResultsIn each individual dataset and in the mega-analysis, strong associations were observed between any substance use disorder diagnosis and the polygenic risk score for schizophrenia (mega-analysis pseudo R2 range 0.8%-3.7%, minimum p=4×10-23).ConclusionsThese results suggest that comorbidity between schizophrenia and substance use disorder is partially attributable to shared polygenic liability. This shared liability is most consistent with a general risk for substance use disorder rather than specific risks for individual substance use disorders and adds to increasing evidence of a blurred boundary between schizophrenia and substance use disorder.


2020 ◽  
Author(s):  
Liu Miao ◽  
Yan Min ◽  
Chuan-Meng Zhu ◽  
Jian-Hong Chen ◽  
Bin Qi ◽  
...  

Abstract Background While observational studies show an association between serum lipid levels and cardiovascular disease (CVD), intervention studies that examine the preventive effects of serum lipid levels on the development of CKD are lacking. Methods To estimate the role of serum lipid levels in the etiology of CKD, we conducted a two-sample Mendelian randomization (MR) study on serum lipid levels. Single nucleotide polymorphisms (SNPs), which were significantly associated genome-wide with plasma serum lipid levels from the GLGC and CKDGen consortium genome-wide association study (GWAS), including total cholesterol (TC, n = 187365), triglyceride (TG, n = 177861), HDL cholesterol (HDL-C, n = 187167), LDL cholesterol (LDL-C, n = 173082), apolipoprotein A1 (ApoA1, n = 20687), apolipoprotein B (ApoB, n = 20690) and CKD (n = 117165), were used as instrumental variables. None of the lipid-related SNPs was associated with CKD (all P > 0.05). Results MR analysis genetically predicted the causal effect between TC/HDL-C and CKD. The odds ratio (OR) and 95% confidence interval (CI) of TC within CKD was 0.756 (0.579 to 0.933) (P = 0.002), and HDL-C was 0.85 (0.687 to 1.012) (P = 0.049). No causal effects between TG, LDL-C- ApoA1, ApoB and CKD were observed. Sensitivity analyses confirmed that TC and HDL-C were significantly associated with CKD. Conclusions The findings from this MR study indicate causal effects between TC, HDL-C and CKD. Decreased TC and elevated HDL-C may reduce the incidence of CKD but need to be further confirmed by using a genetic and environmental approach.


Author(s):  
Anke Hüls ◽  
Marvin N. Wright ◽  
Leonie H. Bogl ◽  
Jaakko Kaprio ◽  
Lauren Lissner ◽  
...  

Abstract Background Childhood obesity is a complex multifaceted condition, which is influenced by genetics, environmental factors, and their interaction. However, these interactions have mainly been studied in twin studies and evidence from population-based cohorts is limited. Here, we analyze the interaction of an obesity-related genome-wide polygenic risk score (PRS) with sociodemographic and lifestyle factors for BMI and waist circumference (WC) in European children and adolescents. Methods The analyses are based on 8609 repeated observations from 3098 participants aged 2–16 years from the IDEFICS/I.Family cohort. A genome-wide polygenic risk score (PRS) was calculated using summary statistics from independent genome-wide association studies of BMI. Associations were estimated using generalized linear mixed models adjusted for sex, age, region of residence, parental education, dietary intake, relatedness, and population stratification. Results The PRS was associated with BMI (beta estimate [95% confidence interval (95%—CI)] = 0.33 [0.30, 0.37], r2 = 0.11, p value = 7.9 × 10−81) and WC (beta [95%—CI] = 0.36 [0.32, 0.40], r2 = 0.09, p value = 1.8 × 10−71). We observed significant interactions with demographic and lifestyle factors for BMI as well as WC. Children from Southern Europe showed increased genetic liability to obesity (BMI: beta [95%—CI] = 0.40 [0.34, 0.45]) in comparison to children from central Europe (beta [95%—CI] = 0.29 [0.23, 0.34]), p-interaction = 0.0066). Children of parents with a low level of education showed an increased genetic liability to obesity (BMI: beta [95%—CI] = 0.48 [0.38, 0.59]) in comparison to children of parents with a high level of education (beta [95%—CI] = 0.30 [0.26, 0.34]), p-interaction = 0.0012). Furthermore, the genetic liability to obesity was attenuated by a higher intake of fiber (BMI: beta [95%—CI] interaction = −0.02 [−0.04,−0.01]) and shorter screen times (beta [95%—CI] interaction = 0.02 [0.00, 0.03]). Conclusions Our results highlight that a healthy childhood environment might partly offset a genetic predisposition to obesity during childhood and adolescence.


Sign in / Sign up

Export Citation Format

Share Document