scholarly journals Exploiting lipotoxicity for the treatment of liver cancer

Author(s):  
Ramona Rudalska ◽  
Lars Zender ◽  
Daniel Dauch

SummaryMetabolic alterations occur frequently in solid tumours, but metabolic cancer therapies are limited by the complexity and plasticity of metabolic networks. We could recently show that activation of the liver X receptor alpha (LXRα) and inhibition of a Raf-1-SCD1 protein complex induces an intracellular accumulation of saturated free fatty acids leading to lethal lipotoxicity in tumour cells and allows for an efficient treatment of liver carcinomas.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lixia Fang ◽  
Jie Fan ◽  
Shulei Luo ◽  
Yaru Chen ◽  
Congya Wang ◽  
...  

AbstractTo construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cellular potential by identifying and engineering beneficial gene targets in sophisticated metabolic networks. Here, we take advantage of CRISPR interference (CRISPRi) and omics analyses to systematically identify beneficial genes that can be engineered to promote free fatty acids (FFAs) production in Escherichia coli. CRISPRi-mediated genetic perturbation enables the identification of 30 beneficial genes from 108 targets related to FFA metabolism. Then, omics analyses of the FFAs-overproducing strains and a control strain enable the identification of another 26 beneficial genes that are seemingly irrelevant to FFA metabolism. Combinatorial perturbation of four beneficial genes involving cellular stress responses results in a recombinant strain ihfAL−-aidB+-ryfAM−-gadAH−, producing 30.0 g L−1 FFAs in fed-batch fermentation, the maximum titer in E. coli reported to date. Our findings are of help in rewiring cellular metabolism and interwoven intracellular processes to facilitate high-titer production of biochemicals.


2020 ◽  
Author(s):  
Lixia Fang ◽  
Jie Fan ◽  
Congya Wang ◽  
Yingxiu Cao ◽  
Hao Song

AbstractTo construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cell potential via identifying and engineering beneficial gene targets in the sophisticated metabolic networks. Here, we develop an approach that integrates CRISPR interference (CRISPRi) to readily modulate genes expression and omics analyses to identify potential targets in multiple cellular processes, enabling systematical discovery of beneficial chromosomal gene targets that can be engineered to optimize free fatty acids (FFAs) production in Escherichia coli. We identify 56 beneficial genes via synergistic CRISPRi-Omics strategy, including 46 novel targets functioning in cell structure and division, and signaling transduction that efficiently facilitate FFAs production. Upon repressing ihfA and overexpressing aidB and tesA’ in E. coli, the recombinant strain LihfA-OaidB results in a FFAs titer of 21.6 g L-1 in fed-batch fermentation, which, to our best knowledge, is the maximum FFAs titer by the recombinant E. coli reported to date.


1985 ◽  
Vol 249 (5) ◽  
pp. H1024-H1030 ◽  
Author(s):  
K. A. Kenno ◽  
D. L. Severson

Diabetes in rats was induced with streptozotocin (100 mg/kg); myocardial cells (myocytes) were isolated from the hearts 3-4 days later. Diabetic myocytes were characterized as having the same viability and ATP content as control myocytes, but the yield was reduced. The triacylglycerol content of diabetic myocytes was elevated by 3.7-fold; this resulted in an increased rate of glycerol output during subsequent incubations. There was a stoichiometric relationship between the decline in the cellular triacylglycerol content and the release of glycerol into the incubation medium. Isoproterenol stimulated the output of glycerol from control myocytes by about twofold, but the stimulation of glycerol output from diabetic myocytes by isoproterenol was markedly less. The combination of 1-methyl-3-isobutylxanthine with isoproterenol or 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate also failed to produce the same lipolytic response in diabetic myocytes as in control myocytes. Triacylglycerol-loaded myocytes from control rats, prepared by including palmitate in the isolation buffers, were also characterized as having increased basal rates of glycerol output and a reduced lipolytic response to isoproterenol. The level of free fatty acids in diabetic myocytes was 2.8-fold greater than in myocytes from control hearts. The intracellular accumulation of free fatty acids in these quiescent populations of diabetic myocytes may limit the ability of catecholamines to produce a further stimulation of lipolysis.


1965 ◽  
Vol 48 (4) ◽  
pp. 609-618 ◽  
Author(s):  
H. K. Dyster-Aas ◽  
C. E. T. Krakau

ABSTRACT In addition to the previously described permeability disturbance in the blood aqueous barrier of the eye, measured as an increase of the aqueous flare, a series of transitory systemic effects have been recorded following the subcutaneous injection of synthetic α-MSH: marked increase of the free fatty acids in plasma, decrease in the serum calcium level, decrease in the blood pressure, increase in the skin temperature, increased frequency and diminished amplitude of respiration, presence of slow waves in the EEG. There is a correlation between the magnitude of the aqueous flare increase and the increase of free fatty acids in plasma and also between the aqueous flare and the minimum serum calcium level.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1812-P
Author(s):  
MARIA D. HURTADO ◽  
J.D. ADAMS ◽  
MARCELLO C. LAURENTI ◽  
CHIARA DALLA MAN ◽  
CLAUDIO COBELLI ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1010-P
Author(s):  
VICTORIA E. PARKER ◽  
DARREN ROBERTSON ◽  
TAO WANG ◽  
DAVID C. HORNIGOLD ◽  
MAXIMILIAN G. POSCH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document