scholarly journals Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway

Author(s):  
Cristian Prieto-Garcia ◽  
Oliver Hartmann ◽  
Michaela Reissland ◽  
Thomas Fischer ◽  
Carina R. Maier ◽  
...  

Abstract Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.

2020 ◽  
Author(s):  
Cristian Prieto-Garcia ◽  
Oliver Hartmann ◽  
Michaela Reissland ◽  
Thomas Fischer ◽  
Carina R. Maier ◽  
...  

AbstractSquamous cell carcinomas (SCC) frequently have a limited response to or develop resistance to platinum-based chemotherapy, and have an exceptionally high tumor mutational burden. As a consequence, overall survival is limited and novel therapeutic strategies are urgently required, especially in light of a rising incidences. SCC tumors express ΔNp63, a potent regulator of the Fanconi Anemia (FA) DNA-damage response pathway during chemotherapy, thereby directly contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 affects the FA DNA repair pathway during cisplatin treatment in SCC, thereby influencing therapy outcome. In an ATR-dependent fashion, USP28 is phosphorylated and activated to positively regulate the DNA damage response. Inhibition of USP28 reduces recombinational repair via an ΔNp63-Fanconi Anemia pathway axis, and weakens the ability of tumor cells to accurately repair DNA. Our study presents a novel mechanism by which tumor cells, and in particular ΔNp63 expressing SCC, can be targeted to overcome chemotherapy resistance.SignificanceLimited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ΔNp63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-ΔNp63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.


2018 ◽  
Author(s):  
Laura A. Baker ◽  
Christoph Krisp ◽  
Daniel Roden ◽  
Holly Holliday ◽  
Sunny Z. Wu ◽  
...  

AbstractBasal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of Differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC, through unknown mechanisms. Here, we have defined a molecular mechanism of action for ID4 in BLBC and the related disease highgrade serous ovarian cancer (HGSOV), by combining RIME proteomic analysis and ChIP-Seq mapping of genomic binding sites. Remarkably, these studies have revealed novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage and regulating DNA damage signalling. Clinical analysis demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair pathways. These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOV.


2015 ◽  
Vol 290 (46) ◽  
pp. 27545-27556 ◽  
Author(s):  
Yingying Guo ◽  
Wanjuan Feng ◽  
Shirley M. H. Sy ◽  
Michael S. Y. Huen

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 723-723
Author(s):  
Alexandra Sobeck ◽  
Stacie Stone ◽  
Bendert deGraaf ◽  
Vincenzo Costanzo ◽  
Johan deWinter ◽  
...  

Abstract Fanconi anemia (FA) is a genetic disorder characterized by hypersensitivity to DNA crosslinking agents and diverse clinical symptoms, including developmental anomalies, progressive bone marrow failure, and predisposition to leukemias and other cancers. FA is genetically heterogeneous, resulting from mutations in any of at least eleven different genes. The FA proteins function together in a pathway composed of a mulitprotein core complex that is required to trigger the DNA-damage dependent activation of the downstream FA protein, FANCD2. This activation is thought to be the key step in a DNA damage response that functionally links FA proteins to major breast cancer susceptibility proteins BRCA1 and BRCA2 (BRCA2 is FA gene FANCD1). The essential function of the FA proteins is unknown, but current models suggest that FA proteins function at the interface between cell cycle checkpoints, DNA repair and DNA replication, and are likely to play roles in the DNA damage response during S phase. To provide a platform for dissecting the key functional events during S-phase, we developed cell-free assays for FA proteins based on replicating extracts from Xenopus eggs. We identified the Xenopus homologs of human FANCD2 (xFANCD2) and several of the FA core complex proteins (xCCPs), and biochemically characterized these proteins in replicating cell-free extracts. We found that xCCPs and a modified isoform of xFANCD2 become associated with chromatin during normal and disrupted DNA replication. Blocking initiation of replication with geminin demonstrated that association of xCCPs and xFANCD2 with chromatin occurs in a strictly replication-dependent manner that is enhanced following DNA damage by crosslinking agents or by addition of aphidicolin, an inhibitor of replicative DNA polymerases. In addition, chromatin binding of xFANCD2, but not xBRCA2, is abrogated when xFANCA is quantitatively depleted from replicating extracts suggesting that xFANCA promotes the loading of xFANCD2 on chromatin. The chromatin-association of xFANCD2 and xCCPs is diminished in the presence of caffeine, an inhibitor of checkpoint kinases. Taken together, our data suggest a model in which the ordered loading of FA proteins on chromatin is required for processing a subset of DNA replication-blocking lesions that are resolved during late stages of replication.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 10509-10509
Author(s):  
R. D. Kennedy ◽  
P. Stuckert ◽  
E. Archila ◽  
M. De LaVega ◽  
C. Chen ◽  
...  

10509 Loss of the fanconi anemia (FA) pathway function has been described in a number of sporadic tumor types including breast, ovarian, pancreatic, head and neck and hematological malignancies. Functionally, the FA pathway responds to stalled DNA replication following DNA damage. Given the importance of the FA pathway in the response to DNA damage, we hypothesized that cells deficient in this pathway may become hyper-dependent on alternative DNA damage response pathways in order to respond to endogenous genotoxic stress such as occurs during metabolism. Therefore, targeting these alternative pathways could offer therapeutic strategies in FA pathway deficient tumors. To identify new therapeutic targets we treated FA pathway competent and deficient cells with a DNA damage response siRNA library, that individually knocked out 230 genes. We identified a number of gene targets that were specifically toxic to FA pathway deficient cells, amongst which was the DNA damage response kinase Ataxia Telangiectasia Mutated (ATM). To test the requirement for ATM in FA pathway deficient cells, we interbred Fancg ± Atm± mice. Consistent with the siRNA screen result, Fancg-/- Atm-/- mice were non viable and Fancg± Atm-/- and Fancg-/- Atm ± progeny were less frequent that would have been expected. Several human cell lines with FA gene mutations were observed to have constitutive activation of ATM which was markedly reduced on correction with the appropriate wild-type FA gene. Interestingly, FA pathway deficient cells, including the FANCC mutant and FANCG mutant pancreatic cancer cell lines, were selectively sensitive to monotherapy with the ATM inhibitor KU55933, as measured by dose inhibition and colony count assays. FA pathway deficient cells also demonstrated an increased level of chromosomal breakage, cell cycle arrest and apoptosis following KU55933 treatment when compared to FA pathway corrected cells. We conclude that FA pathway deficient cells have an increased requirement for ATM activation in order to respond to sporadic DNA damage. This offers the possibility that monotherapy with ATM inhibitors could be a therapeutic strategy for tumors that are deficient for the FA pathway. No significant financial relationships to disclose.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2110
Author(s):  
Elodie Roger ◽  
Johann Gout ◽  
Frank Arnold ◽  
Alica K. Beutel ◽  
Martin Müller ◽  
...  

Personalized medicine in treating pancreatic ductal adenocarcinoma (PDAC) is still in its infancy, albeit PDAC-related deaths are projected to rise over the next decade. Only recently, maintenance therapy with the PARP inhibitor olaparib showed improved progression-free survival in germline BRCA1/2-mutated PDAC patients after platinum-based induction for the first time. Transferability of such a concept to other DNA damage response (DDR) genes remains unclear. Here, we conducted a placebo-controlled, three-armed preclinical trial to evaluate the efficacy of multi-DDR interference (mDDRi) as maintenance therapy vs. continuous FOLFIRINOX treatment, implemented with orthotopically transplanted ATM-deficient PDAC cell lines. Kaplan–Meier analysis, cross-sectional imaging, histology, and in vitro analysis served as analytical readouts. Median overall survival was significantly longer in the mDDRi maintenance arm compared to the maintained FOLFIRINOX treatment. This survival benefit was mirrored in the highest DNA-damage load, accompanied by superior disease control and reduced metastatic burden. In vitro analysis suggests FOLFIRINOX-driven selection of invasive subclones, erased by subsequent mDDRi treatment. Collectively, this preclinical trial substantiates mDDRi in a maintenance setting as a novel therapeutic option and extends the concept to non-germline BRCA1/2-mutant PDAC.


Sign in / Sign up

Export Citation Format

Share Document