scholarly journals LMNB2 promotes the progression of colorectal cancer by silencing p21 expression

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.

2020 ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

Abstract Background: Lamin B2 (LMNB2) is involved in chromatin remodelling and the rupture and reorganization of the nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, there are few reports on the expression and function of LMNB2 in colorectal cancer.Methods: A tissue microarray (TAM) was used to detect the expression of LMNB2 in 226 colorectal cancer tissues and the corresponding adjacent tissues. The CCK-8 colorimetric assay, EdU incorporation analyses, colony formation assays and cell cycle experiments were used to evaluate the effect of LMNB2 on colorectal cancer cell proliferation in vitro, and a mouse tumorigenic model was used to study the effect of LMNB2 on colorectal cancer cells in vivo. The main pathways and genes regulated by LMNB2 were detected by RNA sequencing. Dual-luciferase reporter assays were conducted to test the direct binding between LMNB2 and p21, and ChIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter.Results: The results showed that LMNB2 expression is increased in colorectal cancer tissues. Highly expressed LMNB2 is associated with tumour size and TNM stage. Multivariate Cox analysis showed that LMNB2 can be used as an independent prognostic factor in patients with colorectal cancer. Functional assays indicated that LMNB2 obviously enhanced cell proliferation by promoting cell cycle progression in vitro and in vivo. LMNB2 facilitates cell proliferation via regulating the p21 promoter, whereas LMNB2 had no effect on cell apoptosis in terms of mechanism.Conclusion: LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, indicating the potential value of LMNB2 as a clinical prognostic marker and molecular therapeutic target.


Author(s):  
Aling Shen ◽  
Liya Liu ◽  
Yue Huang ◽  
Zhiqing Shen ◽  
Meizhu Wu ◽  
...  

Background: HAUS6 participates in microtubule-dependent microtubule amplification, but its role in malignancies including colorectal cancer (CRC) has not been explored. We therefore assessed the potential oncogenic activities of HAUS6 in CRC.Results: HAUS6 mRNA and protein expression is higher in CRC tissues, and high HAUS6 expression is correlated with shorter overall survival in CRC patients. HAUS6 knockdown in CRC cell lines suppressed cell growth in vitro and in vivo by inhibiting cell viability, survival and arresting cell cycle progression at G0/G1, while HAUS6 over-expression increased cell viability. We showed that these effects are dependent on activation of the p53/p21 signalling pathway by reducing p53 and p21 degradation. Moreover, combination of HAUS6 knockdown and 5-FU treatment further enhanced the suppression of cell proliferation of CRC cells by increasing activation of the p53/p21 pathway.Conclusion: Our study highlights a potential oncogenic role for HAUS6 in CRC. Targeting HAUS6 may be a promising novel prognostic marker and chemotherapeutic target for treating CRC patients.


2005 ◽  
Vol 289 (4) ◽  
pp. C826-C835 ◽  
Author(s):  
Sharon Barone ◽  
Tomohisa Okaya ◽  
Steve Rudich ◽  
Snezana Petrovic ◽  
Kathy Tenrani ◽  
...  

Ischemia-reperfusion injury (IRI) in liver and other organs is manifested as an injury phase followed by recovery and resolution. Control of cell growth and proliferation is essential for recovery from the injury. We examined the expression of three related regulators of cell cycle progression in liver IRI: spermidine/spermine N-acetyltransferase (SSAT), p21 (a cyclin-dependent kinase inhibitor), and stathmin. Mice were subjected to hepatic IRI, and liver tissues were harvested at timed intervals. The expression of SSAT, the rate-limiting enzyme in the polyamine catabolic pathway, had increased fivefold 6 h after IRI and correlated with increased putrescine levels in the liver, consistent with increased SSAT enzymatic activity in IRI. The expression of p21, which is transactivated by p53, was undetectable in sham-operated animals but was heavily induced at 12 and 24 h of reperfusion and declined to undetectable baseline levels at 72 h of reperfusion. The interaction of the polyamine pathway with the p53-p21 pathway was shown in vitro, where activation of SSAT with polyamine analog or the addition of putrescine to cultured hepatocytes induced the expression of p53 and p21 and decreased cell viability. The expression of stathmin, which is under negative transcriptional regulation by p21 and controls cell proliferation and progression through mitosis, remained undetectable at 6, 12, and 24 h of reperfusion and was progressively and heavily induced at 48 and 72 h of reperfusion. Double-immunofluorescence labeling with antibodies against stathmin and PCNA, a marker of cell proliferation, demonstrated colocalization of stathmin and PCNA at 48 and 72 h of reperfusion in hepatocytes, indicating the initiation of cell proliferation. The distinct and sequential upregulation of SSAT, p21, and stathmin, along with biochemical activation of the polyamine catabolic pathway in IRI in vivo and the demonstration of p53-p21 upregulation by SSAT and putrescine in vitro, points to the important role of regulators of cell growth and cell cycle progression in the pathophysiology and/or recovery in liver IRI. The data further suggest that SSAT may play a role in the initiation of injury, whereas p21 and stathmin may be involved in the resolution and recovery after liver IRI.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2571-2571
Author(s):  
Zhi Hong Lu ◽  
Jason T. Books ◽  
Timothy James Ley

Abstract Mammalian proteins containing “cold-shock” domains belong to the most evolutionarily conserved family of nucleic acid-binding proteins known in bacteria, plants, and animals. One of these proteins, YB-1, has been implicated in basic cellular functions such as cell proliferation and responses to environmental stresses. In mammalian cells, YB-1 has been shown to shuttle between the nuclear and cytoplasmic compartments. Within the nucleus, YB-1 interacts with several DNA-and pre-mRNA-binding proteins, and has been implicated in nuclear activities, including transcriptional regulation, chromatin remodeling, and pre-mRNA splicing. YB-1 is also abundant in the cytoplasm, where it binds nonspecifically to mRNA, and may act as a general regulator of mRNA stability, cytoplasmic localization, and translation. Thus, YB-1 has been proposed to function as a multifunctional regulator for the control of gene expression in both the nucleus and cytoplasm. YB-1 overexpression has been frequently detected in a variety of human cancers, often associated with unfavorable clinical outcomes. However, it remains unclear whether YB-1 overexpression contributes directly to the malignant phenotype, or whether it is simply a non-causal “marker” associated with rapid cell growth (and poor prognostic outcomes). To further assess the role of this protein in health and disease, we created mice deficient for YB-1. Complete loss of function of this gene results in fully-penetrant late embryonic and perinatal lethality. Morphological and histological analyses revealed that YB-1−/− embryos displayed major developmental and functional defects, including neurological abnormalities, hemorrhage, and respiratory failure, which probably contributed to lethality. Growth retardation occurred in all late-stage embryos, and was the result of hypoplasia in multiple organ systems. Consistent with these in vivo results, fibroblasts isolated from YB-1−/− embryos (MEFs) grew slowly and entered senescence prematurely in vitro; these defects were rescued by ectopic expression of a GFP-tagged human YB-1 cDNA. This data suggests that YB-1 plays an important cell-autonomous role in cell proliferation and prevention of premature senescence. We further showed that loss of YB-1 in early passage MEFs resulted a delay in G0/G1 to S-phase progression, and a defect in a transcriptional mechanism that normally represses the expression of the G1-specific CDK inhibitor gene p16Ink4a, and the p53 target genes p21Cip1 and Mdm2. However, YB-1 does not cause “global” changes in the transcriptome, the proteome, or protein synthesis efficiency. As predicted, p16Ink4a and p21Cip1 double knockdown by siRNA treatment led to an increase in the rate of cell proliferation, and an extension of proliferative capacity during late passages in YB-1−/− cells. Furthermore, YB-1 deficiency reduced the ability of MEFs to proliferate normally in response to c-Myc overexpression. In conclusion, our data has revealed that YB-1 is required for normal mouse development and survival, and that it plays an important role in supporting rapid cellular proliferation both in vivo and in vitro. Our data further suggests that YB-1 is a cell cycle progression regulator that is important for preventing the early onset of senescence in cultured MEF cells. This data raises the possibility that disregulated expression of YB-1 may contribute to malignant phenotypes by supporting rapid cell cycle progression, and by protecting cells from cytotoxic stresses.


2020 ◽  
Author(s):  
Yeting Hong ◽  
Wei He ◽  
Jianbin Zhang ◽  
Lu Shen ◽  
Chong Yu ◽  
...  

Abstract Background: Cyclin D3-CDK6 complex is a component of the core cell cycle machinery that regulates cell proliferation. By using Human Protein Atlas database, a higher expression level of this complex was found in gastric cancer. However, the function of this complex in gastric cancer remain poorly understood. This study aims to determine the expression pattern of this complex in gastric cancer and to investigate its biological role during tumorigenesis.Methods: To demonstrate that Cyclin D3-CDK6 regulate the c-Myc/miR-15a/16 axis in a feedback loop in gastric cancer, a series of methods were conducted both in vitro and in vivo experiments, including qRT-PCR, western blot analysis, EdU assay, flow cytometry, luciferase reporter assay and immunohistochemical staining. SPSS and Graphpad prism software were used for data analysis.Results: In this study, we found that Cyclin D3 and CDK6 were significantly upregulated in gastric cancer and correlated with poorer overall survival. Further study proved that this complex significantly promoted cell proliferation and cell cycle progression in vitro and accelerated xenografted tumor growth in vivo. Furthermore, we explored the molecular mechanisms through which the complex mediated Rb phosphorylation and then promoted c-Myc expression in vitro, we also found c-Myc could suppress miR-15a/16 expression in gastric cancer cell. Finally, we found that miR-15a/16 can simultaneously regulate Cyclin D3 and CDK6 expression as direct target genes.Conclusions: Our findings uncover the Cyclin D3-CDK6/c-Myc/miR-15a/16 feedback loop axis as a pivotal role in the regulation of gastric cancer tumorigenesis, and this regulating axis may provide a potential therapeutic target for gastric cancer treatment.


2020 ◽  
Author(s):  
Joseph A. Brazzo ◽  
Kwonmoo Lee ◽  
Yongho Bae

SUMMARYCells exhibit pathological behaviors in response to increased extracellular matrix (ECM) stiffness, including accelerated cell proliferation and migration [1–9], which are correlated with increased intracellular stiffness and tension [2, 3, 10–12]. The biomechanical signal transduction of ECM stiffness into relevant molecular signals and resultant cellular processes is mediated through multiple proteins associated with the actin cytoskeleton in lamellipodia [2, 3, 10, 11, 13]. However, the molecular mechanisms by which lamellipodial dynamics regulate cellular responses to ECM stiffening remain unclear. Previous work described that lamellipodin, a phosphoinositide- and actin filament-binding protein that is known mostly for controlling cell migration [14–21], promotes ECM stiffness-mediated early cell cycle progression [2], revealing a potential commonality between the mechanisms controlling stiffness-dependent cell migration and those controlling cell proliferation. However, i) whether and how ECM stiffness affects the levels of lamellipodin expression and ii) whether stiffness-mediated lamellipodin expression is required throughout cell cycle progression and for intracellular stiffness have not been explored. Here, we show that the levels of lamellipodin expression in cells are significantly increased by a stiff ECM and that this stiffness-mediated lamellipodin upregulation persistently stimulates cell cycle progression and intracellular stiffness throughout the cell cycle, from the early G1 phase to M phase. Finally, we show that both Rac activation and intracellular stiffening are required for the mechanosensitive induction of lamellipodin. More specifically, inhibiting Rac1 activation in cells on stiff ECM reduces the levels of lamellipodin expression, and this effect is reversed by the overexpression of activated Rac1 in cells on soft ECM. We thus propose that lamellipodin is a critical molecular lynchpin in the control of mechanosensitive cell cycle progression and intracellular stiffness.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yingji Chen ◽  
Ying Ji ◽  
Suo Liu ◽  
Yicai Liu ◽  
Wei Feng ◽  
...  

Abstract Background The roles of Polypyrimidine tract-binding protein 3 (PTBP3) in regulating lung squamous cell carcinoma (LUSC) cells progression is unclear. The aim of this study was to investigate the role of PTBP3 in LUSC. Methods Expression and survival analysis of PTBP3 was firstly investigated using TCGA datasets. Quantitative reverse transcription PCR and Western blot were performed to detect PTBP3 expression in clinical samples. Moreover, cell counting kit 8 (CCK-8) assays, colony formation assays and in vivo tumor formation assays were used to examine the effects of PTBP3 on LUSC cell proliferation. RNA-sequence and analysis explores pathways regulated by PTBP3.Flow cytology was used analyzed cell cycle. Cell cycle-related markers were analyzed by Western blot. Results PTBP3 was found to be overexpressed in LUSC tissues compared with normal tissues. High PTBP3 expression was significantly correlated with poor prognosis. In vitro and vivo experiments demonstrated that PTBP3 knockdown caused a significant decrease in the proliferation rate of cells. Bioinformatics analysis showed that PTBP3 involved in cell cycle pathway regulation in LUSC. Furthermore, PTBP3 knockdown arrested cell cycle progression at S phase via decreasing CDK2/Cyclin A2 complex. In addition, downregulation of PTBP3 significantly decreased the expression of CDC25A. Conclusions Our results suggest that PTBP3 regulated LUSC cell proliferation via cell cycle and might be a potential target for molecular therapy of LUSC.


Oncogenesis ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Yang Sun ◽  
Chen Ye ◽  
Wen Tian ◽  
Wen Ye ◽  
Yuan-Yuan Gao ◽  
...  

AbstractTransient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.


Sign in / Sign up

Export Citation Format

Share Document