scholarly journals The emerging roles of neutrophil extracellular traps in wound healing

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Shuainan Zhu ◽  
Ying Yu ◽  
Yun Ren ◽  
Liying Xu ◽  
Huilin Wang ◽  
...  

AbstractDelayed wound healing causes problems for many patients both physically and psychologically, contributing to pain, economic burden, loss of function, and even amputation. Although many factors affect the wound healing process, abnormally prolonged or augmented inflammation in the wound site is a common cause of poor wound healing. Excessive neutrophil extracellular trap (NET) formation during this phase may amplify inflammation and hinder wound healing. However, the roles of NETs in wound healing are still unclear. Herein, we briefly introduce NET formation and discuss the possible NET-related mechanisms in wound healing. We conclude with a discussion of current studies, focusing on the roles of NETs in diabetic and normoglycemic wounds and the effectiveness of NET-targeting treatments in wound healing.

2020 ◽  
Vol 26 (36) ◽  
pp. 4551-4568
Author(s):  
Mohammad Kashif Iqubal ◽  
Sadaf Saleem ◽  
Ashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Faheem Hyder Pottoo ◽  
...  

A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement of nanotechnology can ameliorate the performance of these protective coverings. In recent years, nano-based formulations have gained immense popularity among researchers for the wound healing process due to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic and herbal agents, and combination therapy available for the treatment and the current nano-based systems available for delivery through the topical route for wound healing.


2019 ◽  
Vol 34 (8) ◽  
pp. 1171-1187
Author(s):  
Farnoush Oveissi ◽  
Naser Tavakoli ◽  
Mohsen Minaiyan ◽  
Mohammad Reza Mofid ◽  
Azade Taheri

Epidermal lipoxygenase enzyme extracted from Ambystoma mexicanum (AmbLOXe) is known to accelerate the wound-healing process. AmbLOXe as a protein suffers from inactivation and losing its activity during formulation. Therefore, a delivery system that protects AmbLOXe from inactivation and preserves its activity is needed. We prepared AmbLOXe-loaded pectin nanoparticles (AmbLOXe Pec-NPs) and placed them into an alginate hydrogel. AmbLOXe Pec-NPs incorporation into the alginate hydrogel provides a means for controlled and sustained delivery of AmbLOXe to the wound site. Furthermore, the suitable swelling behavior and mechanical properties of AmbLOXe Pec-NPs alginate hydrogel make it feasible for clinical use. AmbLOXe Pec-NPs alginate hydrogel significantly enhanced the wound-healing process on the rat full-thickness excisional wounds, increased the rate of wound closure, enhanced the re-epithelialization and decreased the incidence of abnormal scarring. AmbLOXe Pec-NPs alginate hydrogel can be proposed as an effective wound hydrogel for improving wound healing with minimal scarring.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Omar Rafael Alemán ◽  
Nancy Mora ◽  
Ricarda Cortes-Vieyra ◽  
Eileen Uribe-Querol ◽  
Carlos Rosales

Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγreceptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγreceptor is responsible for NET formation, each of the two human Fcγreceptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2959 ◽  
Author(s):  
Sindi P. Ndlovu ◽  
Kwanele Ngece ◽  
Sibusiso Alven ◽  
Blessing A. Aderibigbe

Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.


2021 ◽  
Author(s):  
Aisa Hosseinnejad ◽  
Nadine Ludwig ◽  
Ann-Katrin Wienkamp ◽  
Rahul Rimal ◽  
Christian Bleilevens ◽  
...  

Non-fouling DNase I conjugated microgel provide a novel biohybrid platform to disrupt Neutrophil extracellular traps (NETs) and can be used as a non-thrombogenic coating for reduction of NET-mediated inflammation and microthrombi formation.


Author(s):  
Yu Zuo ◽  
Melanie Zuo ◽  
Srilakshmi Yalavarthi ◽  
Kelsey Gockman ◽  
Jacqueline A. Madison ◽  
...  

ABSTRACTHere, we report on four patients whose hospitalizations for COVID-19 were complicated by venous thromboembolism (VTE). All demonstrated high levels of D-dimer as well as high neutrophil-to-lymphocyte ratios. For three patients, we were able to test sera for neutrophil extracellular trap (NET) remnants and found significantly elevated levels of cell-free DNA, myeloperoxidase-DNA complexes, and citrullinated histone H3. Neutrophil-derived S100A8/A9 (calprotectin) was also elevated. Given strong links between hyperactive neutrophils, NET release, and thrombosis in many inflammatory diseases, the potential relationship between NETs and VTE should be further investigated in COVID-19.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ajay Singh ◽  
Zeba Maqsood ◽  
Mohammad Kashif Iqubal ◽  
Javed Ali ◽  
Sanjula Baboota

: Wound healing is a complex and dynamic phenomenon that involves the restoration of normal physiology and functioning of injured tissue. The process of wound healing is primarily regulated by various cytokines, inflammatory mediators, and growth factors at the molecular level. Any intervention in the normal wound healing process leads to further tissue damage, which in turn leads to delayed wound healing. Several natural, synthetic drugs and their combinations were used to restored and accelerate the wound healing process. However, the conventional delivery carriers were not much effective, and thus, nowadays, nanocarriers are gaining much popularity since they are playing a pivotal role in drug delivery. Since nanocarriers have their own applicability and benefits (enhance the bioavailability, site-specific targeting) so, they can accelerate wound healing more efficiently. This review briefly discussed about the various events that take place during the wound healing process with emphasis on various natural, synthetic, and combination drug therapy used for accelerating wound healing and the role of nanotechnology-based approaches in chronic wound healing.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1134 ◽  
Author(s):  
Jiyoon Ryu ◽  
Colleen Loza ◽  
Huan Xu ◽  
Min Zhou ◽  
Jason Hadley ◽  
...  

Adiponectin is an adipokine with anti-insulin resistance and anti-inflammatory functions. It exists in serum predominantly in three multimeric complexes: the trimer, hexamer, and high-molecular-weight forms. Although recent studies indicate that adiponectin promotes wound healing in rodents, its role in the wound healing process in humans is unknown. This study investigated the expression levels of adiponectin in adipose tissue and serum of women who experienced either normal or delayed wound healing after abdominal plastic surgery. We found that obese women with delayed healing had slightly lower total adiponectin levels in their adipose tissue compared with women with normal healing rates. Among the different isoforms of adiponectin, levels of the trimer forms were significantly reduced in adipose tissue, but not the serum, of obese women with delayed healing compared to women who healed normally. This study provides clinical evidence for a potential role of low-molecular-weight oligomers of adiponectin in the wound healing process as well as implications for an autocrine and/or paracrine mechanism of adiponectin action in adipose tissues.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 1736-1746 ◽  
Author(s):  
Chayakorn Petchakup ◽  
Hui Min Tay ◽  
King Ho Holden Li ◽  
Han Wei Hou

A novel integrated inertial-impedance cytometer for rapid and label-free electrical profiling of neutrophil extracellular trap formation (NETosis).


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2079
Author(s):  
Michal Santocki ◽  
Elzbieta Kolaczkowska

Although neutrophil extracellular traps (NETs) were discovered only 16 years ago, they have already taken us from heaven to hell as we learned that apart from beneficial trapping of pathogens, they cause, or contribute to, numerous disorders. The latter is connected to their persistent presence in the blood or tissue, and we hardly know how they are removed in mild pathophysiological conditions and why their removal is impaired in multiple severe pathological conditions. Herein, we bring together all data available up till now on how NETs are cleared—from engaged cells, their phenotypes, to involved enzymes and molecules. Moreover, we hypothesize on why NET removal is challenged in multiple disorders and propose further directions for studies on NET removal as well as possible therapeutic strategies to have them cleared.


Sign in / Sign up

Export Citation Format

Share Document