scholarly journals USP15 and USP4 facilitate lung cancer cell proliferation by regulating the alternative splicing of SRSF1

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Tanuza Das ◽  
Eun-Young Lee ◽  
Hye Jin You ◽  
Eunice EunKyeong Kim ◽  
Eun Joo Song

AbstractThe deubiquitinating enzyme USP15 is implicated in several human cancers by regulating different cellular processes, including splicing regulation. However, the underlying molecular mechanisms of its functional relevance and the successive roles in enhanced tumorigenesis remain ambiguous. Here, we found that USP15 and its close paralog USP4 are overexpressed and facilitate lung cancer cell proliferation by regulating the alternative splicing of SRSF1. Depletion of USP15 and USP4 impair SRSF1 splicing characterized by the replacement of exon 4 with non-coding intron sequences retained at its C-terminus, resulting in an alternative isoform SRSF1-3. We observed an increased endogenous expression of SRSF1 in lung cancer cells as well, and its overexpression significantly enhanced cancer cell phenotype and rescued the depletion effect of USP15 and USP4. However, the alternatively spliced isoform SRSF1-3 was deficient in such aspects for its premature degradation through nonsense-mediated mRNA decay. The increased USP15 expression contributes to the lung adenocarcinoma (LUAD) development and shows significantly lower disease-specific survival of patients with USP15 alteration. In short, we identified USP15 and USP4 as key regulators of SRSF1 alternative splicing with altered functions, which may represent the novel prognostic biomarker as well as a potential target for LUAD.

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Yafeng Fan ◽  
Hongxia Li ◽  
Zhongping Yu ◽  
Wen Dong ◽  
Xiaoyan Cui ◽  
...  

Abstract Long non-coding RNA (lncRNA) FYVE, RhoGEF and PH domain containing 5 antisense RNA 1 (FGD5-AS1) has been reported as an oncogene in colorectal cancer, promoting its tumorgenesis. The present paper focused on searching the potential function of FGD5-AS1 in non-small cell lung carcinoma (NSCLC). There are connections between the expression of lncRNA FGD5-AS1 and human NSCLC tumor growth and progression. Also, the relationships between FGD5-AS1, hsa-miR-107 and mRNA fibroblast growth factor receptor like 1 (FGFRL1) are going to test their interaction in NSCLC cell lines, which may cause a series of biological behaviors of NSCLC cells. qRT-PCR analysis was conducted to test the expression of RNAs in different situation. CCK-8 experiment and clone formation assay were performed to assess proliferation of NSCLC cells. Also, connection between FGD5-AS1 and hsa-miR-107 were investigated by luciferase reporter assay and RNA pull-down assay. Rescue experiments were performed to verify the modulating relationship between FGD5-AS1, hsa-miR-107 and FGFRL1. High-level expression of FGD5-AS1 was found in NSCLC. FGD5-AS1 may promote the proliferation of NSCLC cells. Also, the combination between hsa-miR-107, FGD5-AS1 and NSCLC have been proved, which means they can play an interaction function in NSCLC cells. Thence, we concluded that lncRNA FGD5-AS1 promotes non-small cell lung cancer cell proliferation through sponging hsa-miR-107 to up-regulate FGFRL1.


2018 ◽  
Vol 58 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Yangyang Feng ◽  
Yue Gao ◽  
Juanhan Yu ◽  
Guiyang Jiang ◽  
Xiupeng Zhang ◽  
...  

2019 ◽  
Vol 18 ◽  
pp. 153303381986197 ◽  
Author(s):  
Xiaohong Yan ◽  
Hui Yu ◽  
Yao Liu ◽  
Jie Hou ◽  
Qiao Yang ◽  
...  

MicroRNA-27a-3p has been implicated to play crucial roles in human cancers. However, the biological role and underlying mechanisms of microRNA-27a-3p in regulating nonsmall lung cancer remain unclear. MicroRNA-27a-3p expression levels in non-small lung cancer cell lines were detected by quantitative real-time polymerase chain reaction, using a normal cell line as control. The effects of microRNA-27a-3p on cell proliferation and apoptosis were analyzed by Cell Counting Kit-8 assay and flow cytometry assay. Luciferase activity reporter assay and Western blot were conducted to validate the potential targets of miR27a-3p after preliminary screening by TargetScan. Effect of microRNA-27a-3p or homeobox B8 on the overall survival of patients with non-small lung cancer was analyzed at Kaplan-Meier Plotter website. MicroRNA-27a-3p expression levels were significantly reduced in non-small lung cancer cell lines compared with normal cell line. Overexpression of microRNA-27a-3p inhibits non-small lung cancer cell proliferation but promotes cell apoptosis. Homeobox B8 was further validated as a functional target of microRNA-27a-3p. Collectively, our results indicated that microRNA-27a-3p acts as a tumor suppressor in non-small lung cancer via targeting homeobox B8.


Sign in / Sign up

Export Citation Format

Share Document