scholarly journals Alamandine alleviates hypertension and renal damage via oxidative-stress attenuation in Dahl rats

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Juexiao Gong ◽  
Man Luo ◽  
Yonghong Yong ◽  
Shan Zhong ◽  
Peng Li

AbstractAlamandine (Ala) is a novel member of the renin–angiotensin-system (RAS) family. The present study aimed to explore the effects of Ala on hypertension and renal damage of Dahl salt-sensitive (SS) rats high-salt diet-induced, and the mechanisms of Ala on renal-damage alleviation. Dahl rats were fed with high-salt diets to induce hypertension and renal damage in vivo, and HK-2 cells were treated with sodium chloride (NaCl) to induce renal injury in vitro. Ala administration alleviated the high-salt diet-induced hypertension, renal dysfunction, and renal fibrosis and apoptosis in Dahl SS rats. The HK-2 cells’ damage, and the increases in the levels of cleaved (c)-caspase3, c-caspase8, and c-poly(ADP-ribose) polymerase (PARP) induced by NaCl were inhibited by Ala. Ala attenuated the NaCl-induced oxidative stress in the kidney and HK-2 cells. DETC, an inhibitor of SOD, reversed the inhibitory effect of Ala on the apoptosis of HK-2 cells induced by NaCl. The NaCl-induced increase in the PKC level was suppressed by Ala in HK-2 cells. Notably, PKC overexpression reversed the moderating effects of Ala on the NaCl-induced apoptosis of HK-2 cells. These results show that Ala alleviates high-salt diet-induced hypertension and renal dysfunction. Ala attenuates the renal damage via inhibiting the PKC/reactive oxygen species (ROS) signaling pathway, thereby suppressing the apoptosis in renal tubular cells.

2002 ◽  
Vol 283 (5) ◽  
pp. F1132-F1141 ◽  
Author(s):  
Violeta Alvarez ◽  
Yasmir Quiroz ◽  
Mayerly Nava ◽  
Héctor Pons ◽  
Bernardo Rodríguez-Iturbe

Recent evidence suggests that salt-sensitive hypertension develops as a consequence of renal infiltration with immunocompetent cells. We investigated whether proteinuria, which is known to induce interstitial nephritis, causes salt-sensitive hypertension. Female Lewis rats received 2 g of BSA intraperitoneally daily for 2 wk. After protein overload (PO), 6 wk of a high-salt diet induced hypertension [systolic blood pressure (SBP) = 156 ± 11.8 mmHg], whereas rats that remained on a normal-salt diet and control rats (without PO) on a high-salt diet were normotensive. Administration of mycophenolate mofetil (20 mg · kg−1 · day−1) during PO resulted in prevention of proteinuria-related interstitial nephritis, reduction of renal angiotensin II-positive cells and oxidative stress (superoxide-positive cells and renal malondialdehyde content), and resistance to the hypertensive effect of the high-salt diet (SBP = 129 ± 12.2 mmHg). The present studies support the participation of renal inflammatory infiltrate in the pathogenesis of salt-sensitive hypertension and provide a direct link between two risk factors of progressive renal damage: proteinuria and hypertension.


2015 ◽  
Vol 60 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Avshalom Leibowitz ◽  
Alexander Volkov ◽  
Konstantin Voloshin ◽  
Chen Shemesh ◽  
Iris Barshack ◽  
...  

2020 ◽  
Vol 318 (4) ◽  
pp. F982-F993
Author(s):  
Ammar J. Alsheikh ◽  
John Henry Dasinger ◽  
Justine M. Abais-Battad ◽  
Daniel J. Fehrenbach ◽  
Chun Yang ◽  
...  

Studies examining mechanisms of Dahl salt-sensitive (SS) hypertension have implicated the infiltration of leukocytes in the kidneys, which contribute to renal disease and elevated blood pressure. However, the signaling pathways by which leukocytes traffic to the kidneys remain poorly understood. The present study nominated a signaling pathway by analyzing a kidney RNA sequencing data set from SS rats fed either a low-salt (0.4% NaCl) diet or a high-salt (4.0% NaCl) diet. From this analysis, chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-C motif) receptor 2 (CCR2) were nominated as a potential pathway modifying renal leukocyte infiltration and contributing to SS hypertension. The functional role of the CCL2/CCR2 pathway was tested by daily administration of CCR2 antagonist (RS-102895 at 5 mg·kg−1·day−1 in DMSO) or DMSO vehicle for 3 or 21 days by intraperitoneal injections during the high salt challenge. Blood pressure, renal leukocyte infiltration, and renal damage were evaluated. The results demonstrated that RS-102895 treatment ameliorated renal damage (urinary albumin excretion; 43.4 ± 5.1 vs. 114.7 ± 15.2 mg/day in vehicle, P < 0.001) and hypertension (144.3 ± 2.2 vs. 158.9 ± 4.8 mmHg in vehicle, P < 0.001) after 21 days of high-salt diet. It was determined that renal leukocyte infiltration was blunted by day 3 of the high-salt diet (1.4 ± 0.1 vs. 1.9 ± 0.2 in vehicle × 106 CD45+ cells/kidney, P = 0.034). An in vitro chemotaxis assay validated the effect of RS-102895 on leukocyte chemotaxis toward CCL2. The results suggest that increased CCL2 in SS kidneys is important in the early recruitment of leukocytes, and blockade of this recruitment by administering RS-102895 subsequently blunted the renal damage and hypertension.


2008 ◽  
Vol 294 (6) ◽  
pp. H2814-H2821 ◽  
Author(s):  
Micheline M. de Resende ◽  
Andrew S. Greene

We have previously shown that skeletal muscle angiogenesis induced by electrical stimulation is significantly attenuated when SS-13BN/Mcwi rats are fed a high-salt diet. This effect was associated with a large increase in endothelial cell (EC) apoptosis. We hypothesized that the low levels of ANG II during high-salt diet would increase EC apoptosis and consequently diminish the angiogenic response. To test this hypothesis, a series of in vitro and in vivo studies was performed. EC apoptosis and viability were evaluated after incubation with ANG II under serum-free conditions. After 24 h of incubation, ANG II increased EC viability and Bcl-2-to-Bax ratio along with a dose-dependent decrease in EC apoptosis. This effect was blocked by the ANG II type 1 receptor antagonist losartan. To confirm our in vitro results, ANG II (3 ng·kg−1·min−1) was chronically infused in rats fed a high-salt diet (4% NaCl). ANG II decreased EC apoptosis and produced a significant increase (40%) in skeletal muscle angiogenesis after electrical stimulation. These in vivo results were in agreement with our in vitro results and demonstrate that the attenuation of ANG II levels during a high-salt diet may induce EC apoptosis and consequently block the angiogenic response induced by electrical stimulation. Furthermore, under normal conditions, ANG II increases EC viability and protects EC from apoptosis possibly by inactivation of the mitochondrial apoptotic pathway.


2020 ◽  
Vol 13 (4) ◽  
pp. 695-705
Author(s):  
Olayinka Christianah Jayeola ◽  
Ademola Adetokunbo Oyagbemi ◽  
Omolara Ibiwunmi Okunlola ◽  
Olayiwola Olubamiwa ◽  
Temidayo Olutayo Omobowale ◽  
...  

Background and Aim: High salt diet and uninephrectomy are associated with high blood pressure with attendant cardiovascular disease conditions such as hypertension, renal damage, myocardial infarction, and stroke. The aim of this study was to investigate the beneficial effects of consumption of cocoa and cocoa-containing products in the management of high blood pressure in uninephrectomized hypertensive rats. Materials and Methods: The effect of cocoa powder on blood pressure, markers of inflammation, oxidative stress, and histopathology were investigated in uninephrectomized animals fed with cocoa feed alone or in combination with a high salt diet. Male rats were randomly divided into five groups: Group A was the control group and fed with normal feed alone, Group B was fed with cocoa feed alone, Group C was fed with high salt diet (8% salt), Group D was fed with cocoa-feed compounded with 8% salt for 4 weeks after uninephrectomy, and Group E was uninephrectomized rats on a normal diet. The left kidneys of animals in Groups C, D, and E were removed by surgery. After 4 weeks of treatment, the systolic, diastolic, and mean arterial blood pressure was measured. The serum markers of renal damage and oxidative stress were determined. Histological examination was also performed on renal and cardiac tissues. Results: Results showed significant increases in biomarkers of oxidative stress, inflammation, and renal damage with a concomitant decrease in antioxidant status in hypertensive uninephrectomized rats. Cocoa feed, however, significantly improved blood pressure and nitric oxide bioavailability, antioxidant status and reduced markers of inflammation and oxidative stress. Conclusion: These findings show that cocoa powder could be used to maintain blood pressure levels in hypertensive rats through its antioxidant capacity.


2014 ◽  
Vol 114 ◽  
pp. 10-15 ◽  
Author(s):  
Yun-Zi Liu ◽  
Ji-Kuai Chen ◽  
Zhang-Peng Li ◽  
Ting Zhao ◽  
Min Ni ◽  
...  

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Xiaoyan Wang ◽  
Crisanto S Escano ◽  
Laureano Asico ◽  
John E Jones ◽  
Alan Barte ◽  
...  

D 3 dopamine receptor (D 3 R) deficient mice have renin-dependent hypertension but the hypertension is mild and is not associated with oxidative stress. In order to determine if any compensatory mechanism in the kidney is involved in the regulation of blood pressure with disruption of D 3 R, we measured the renal protein expression of dopamine receptors in D 3 R homozygous (D 3 -/-) and heterozygous (D 3 +/-) knockout mice and their wild type (D 3 +/+) littermates. D 5 dopamine receptor (D 5 R) (169±23%, reported as % of D 3 +/+, n=5/group) expression was increased but D 4 dopamine receptors protein expression (59±8%) was decreased, while no significant changes were found with D 1 and D 2 dopamine receptors. Immunocytochemistry showed a stronger renal staining of D 5 R but without a change in renal tubule cell distribution in D 3 -/- relative to D 3 +/+ mice. D 5 R abundance was also increased in D 3 +/- (205±30%, n=5/group) relative to D 3 +/+ mice, while D 1 R abundance was similar between D 3 +/- and D 3 +/+ mice. The increase in D 5 R expression was abolished while blood pressure was increased further in D 3 -/- mice fed a high salt diet. Treatment of the D 1 -like (including D 1 and D 5 receptors) antagonist, SCH23390 , increased the blood pressure to a greater extent in anesthetized D 3 -/- mice than in D 3 +/+ mice (n=4/group), suggesting that the upregulation of D 5 R may modulate the hypertension in mice caused by the disruption of D 3 R. Since dopamine inhibits the NADPH oxidase-induced production of reactive oxygen species (ROS) via the D 5 R, we also measured the protein expression of NOXs in the kidney and isoprostane in the urine. No NADPH oxidase subunit was increased in D 3 -/- and D 3 +/- mice relative to D 3 +/+ mice fed a normal or salt high salt diet, and urinary isoprostane excretion was also similar in D 3 -/- and D 3 +/+ mice. Our findings suggest that the upregulation of D 5 R may minimize the hypertension and prevent oxidative stress in D 3 -/- mice.


1994 ◽  
Vol 267 (6) ◽  
pp. H2471-H2482 ◽  
Author(s):  
M. Inoko ◽  
Y. Kihara ◽  
I. Morii ◽  
H. Fujiwara ◽  
S. Sasayama

To establish an experimental model for studying a specific transitional stage for compensatory hypertrophy to heart failure, we studied the pathophysiology of the left ventricle (LV) in Dahl salt-sensitive (DS) rats fed a high-salt diet. DS rats fed an 8% NaCl diet after the age of 6 wk developed concentric LV hypertrophy at 11 wk, followed by marked LV dilatation at 15-20 wk. During the latter stage, the DS rats showed labored respiration with LV global hypokinesis. All the DS rats died within 1 wk by massive pulmonary congestion. The dissected left ventricles revealed chamber dilatation and a marked increase in mass without myocardial necrosis. In contrast, corresponding Dahl salt-resistant (DR) rats fed the same diet showed neither mortality nor any of these pathological changes. The in vivo LV end-systolic pressure-volume relationship shifted to the right with a less steep slope in the failing DS rats compared with that in age-matched DR rats. Isometric contractions of LV papillary muscles isolated from these DS rats showed reduced tension development in the failing stage, but normal tension development in the hypertrophied stage. In conclusion, the DS rat fed a high-salt diet is a useful model showing rapidly developing congestive heart failure, in which the transition from compensatory hypertrophy to decompensatory dilatation of LV is easily and consistently manifested.


2013 ◽  
Vol 6 (273) ◽  
pp. ec97-ec97 ◽  
Author(s):  
Annalisa M. VanHook

In addition to contributing to the immune response against pathogens, helper T (TH ) cells that produce the cytokine interleukin-17 (IL-17) also contribute to autoimmune diseases. Maintenance of both normal and pathogenic TH17 cell activities depends on activation of the IL-23 receptor (IL-23R). By performing transcriptional profiling and network analysis of transcriptional changes in wild-type and Il23r–/– mouse T cells that were activated and induced to differentiate into TH17 cells, Wu et al. identified serum glucocorticoid kinase 1 (Sgk1) as a key node downstream of IL-23R. In vitro differentiation of naïve T cells from Sgk1–/– mice revealed that SGK1 was not required for primary TH17 cell differentiation but was required for maintenance of TH17 cells and continued signaling through IL-23R. Analysis of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, in Sgk1–/– animals showed that these mice had reduced incidence of disease, severity of symptoms, and production of IL-17 compared with EAE in wild-type animals. In vitro experiments were consistent with a model in which SGK1 phosphorylates the transcription factor Foxo1 to repress its ability to indirectly activate Il23r expression. SGK1 mediates sodium (Na+) homeostasis by modulating the activity of epithelial Na+ channels, so the authors tested the effect of Na+ on TH17 cell differentiation. Increasing the concentration of NaCl in the culture medium increased expression of Sgk1, Il23r, Il17, and other genes associated with TH17 differentiation in wild-type, but not Sgk1–/–, T cells that had been activated but not treated with factors to influence their development into a particular type of TH cell. Compared with a normal diet, a high-salt diet increased the number of TH17 cells in the guts of wild-type mice but induced a milder increase in the abundance of TH17 cells in Sgk1–/– mice. In the EAE model, mice on a high-salt diet showed increased severity of disease compared with those fed a normal diet. However, a high-salt diet had a much milder effect on disease symptoms in Sgk1–/– mice. In a related study, Kleinewietfeld etal. differentiated naïve human T cells in culture conditions that mimicked the interstitial fluid of animals fed a high-salt diet and found that the additional NaCl promoted differentiation of TH17 cells that expressed markers consistent with autoimmune activity. Further experiments indicated that this effect was mediated by the kinase p38, the transcription factor and p38 target NFAT5, and the NFAT5 target Sgk1. In vivo experiments performed in this study were consistent with those reported by Wu et al. These studies suggest that production of the pathogenic TH17 cells that contribute to autoimmunity may be exacerbated by dietary salt. Commentary by O’Shea and Jones considers the implications and limitations of these findings in the context of autoimmune disease.C. Wu, N. Yosef, T. Thalhamer, C. Zhu, S. Xiao, Y. Kishi, A. Regev, V. K. Kuchroo, Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature496, 513–517 (2013). [PubMed]M. Kleinewietfeld, A. Manzel, J. Titze, H. Kvakan, N. Yosef, R. A. Linker, D. N. Muller, D. A. Hafler, Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature496, 518–522 (2013). [PubMed]J. J. O’Shea, R. G. Jones, Rubbing salt in the wound. Nature496, 437–439 (2013). [PubMed]


Andrologia ◽  
2020 ◽  
Vol 52 (11) ◽  
Author(s):  
Justina Nwandimma Nwangwa ◽  
Augustine Lishilinimye Udefa ◽  
Ernest Atelhe Amama ◽  
Inah Onete Inah ◽  
Hamza Joseph Ibrahim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document