scholarly journals Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant

Heredity ◽  
2022 ◽  
Author(s):  
Che-Wei Chang ◽  
Eyal Fridman ◽  
Martin Mascher ◽  
Axel Himmelbach ◽  
Karl Schmid

AbstractDetermining the extent of genetic variation that reflects local adaptation in crop-wild relatives is of interest for the purpose of identifying useful genetic diversity for plant breeding. We investigated the association of genomic variation with geographical and environmental factors in wild barley (Hordeum vulgare L. ssp. spontaneum) populations of the Southern Levant using genotyping by sequencing (GBS) of 244 accessions in the Barley 1K+ collection. The inference of population structure resulted in four genetic clusters that corresponded to eco-geographical habitats and a significant association between lower gene flow rates and geographical barriers, e.g. the Judaean Mountains and the Sea of Galilee. Redundancy analysis (RDA) revealed that spatial autocorrelation explained 45% and environmental variables explained 15% of total genomic variation. Only 4.5% of genomic variation was solely attributed to environmental variation if the component confounded with spatial autocorrelation was excluded. A synthetic environmental variable combining latitude, solar radiation, and accumulated precipitation explained the highest proportion of genomic variation (3.9%). When conditioned on population structure, soil water capacity was the most important environmental variable explaining 1.18% of genomic variation. Genome scans with outlier analysis and genome-environment association studies were conducted to identify adaptation signatures. RDA and outlier methods jointly detected selection signatures in the pericentromeric regions, which have reduced recombination, of the chromosomes 3H, 4H, and 5H. However, selection signatures mostly disappeared after correction for population structure. In conclusion, adaptation to the highly diverse environments of the Southern Levant over short geographical ranges had a limited effect on the genomic diversity of wild barley. This highlighted the importance of nonselective forces in genetic differentiation.

2021 ◽  
Author(s):  
Che-Wei Chang ◽  
Eyal Fridman ◽  
Martin Mascher ◽  
Axel Himmelbach ◽  
Karl J Schmid

Determining the extent of genetic variation that reflects local adaptation in crop wild relatives is of interest to discovering useful genetic diversity for plant breeding. We investigated the association of genomic variation with geographical and environmental factors in wild barley (Hordeum vulgare L. ssp. spontaneum) populations of the Southern Levant using genotyping-by-sequencing (GBS) of 244 accessions of the Barley1K+ collection. Inference of population structure resulted in four genetic clusters that corresponded to eco-geographical habitats and a significant association of lower gene flow rates with geographical barriers, e.g. the Judaean Mountains and the Sea of Galilee. Redundancy analysis (RDA) revealed that spatial autocorrelation explained 45% and environmental variables explained 15% of total genomic variation. Only 4.5% of genomic variation was exclusively attributed to environmental variation if the component confounded with spatial autocorrelation was excluded. A synthetic environmental variable combining latitude, solar radiation, and accumulated precipitation explained the highest proportion of genomic variation (3.9%). After correcting for population structure, soil water capacity was the most important environmental variable explaining 1.18% of genomic variation. Genome scans with outlier analysis and genome-environment association studies were conducted to identify signatures of adaptation. RDA and outlier methods jointly detected selection signatures in the pericentromeric regions of chromosome 3H, 4H, and 5H, but they mostly disappeared after correction for population structure. In conclusion, adaptation to the highly diverse environments of the Southern Levant over short geographical ranges has a small effect on the genomic diversity of wild barley highlighting the importance of non-selective forces in genetic differentiation.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Ljiljana Brbaklić ◽  
Dragana Trkulja ◽  
Sanja Mikić ◽  
Milan Mirosavljević ◽  
Vojislava Momčilović ◽  
...  

Determination of genetic diversity and population structure of breeding material is an important prerequisite for discovering novel and valuable alleles aimed at crop improvement. This study’s main objective was to characterize genetic diversity and population structure of a collection representing a 40-year long historical period of barley (Hordeum vulgare L.) breeding, using microsatellites, pedigree, and phenotypic data. The set of 90 barley genotypes was phenotyped during three growing seasons and genotyped with 338 polymorphic alleles. The indicators of genetic diversity showed differentiation changes throughout the breeding periods. The population structure discriminated the breeding material into three distinctive groups. The principal coordinate analysis grouped the genotypes according to their growth habit and row type. An analysis of phenotypic variance (ANOVA) showed that almost all investigated traits varied significantly between row types, seasons, and breeding periods. A positive effect on yield progress during the 40-year long breeding period could be partly attributed to breeding for shorter plants, which reduced lodging and thus provided higher yield stability. The breeding material revealed a considerable diversity level based on microsatellite and phenotypic data without a tendency of genetic erosion throughout the breeding history and implied dynamic changes in genetic backgrounds, providing a great gene pool suitable for further barley improvement.


2016 ◽  
Vol 339 (11-12) ◽  
pp. 454-461 ◽  
Author(s):  
Ammar Elakhdar ◽  
Mohamed Abd EL-Sattar ◽  
Khairy Amer ◽  
Assma Rady ◽  
Toshihiro Kumamaru

1986 ◽  
Vol 64 (11) ◽  
pp. 2769-2773
Author(s):  
Bernard B. Baum

A brief historical sketch of the classification of barley (Hordeum vulgare L.) cultivars is presented along with reference to key reviews on this subject. Characters, utilized in the comprehensive study on the barley cultivars of North America by Aberg and Wiebe (U.S. Department of Agriculture Technical Bulletin 942), were subjected to a series of phenetic character analyses using an information theory model and a spatial autocorrelation model. The ranking of the 48 characters in order of their importance (for classification and identification purposes) from the character analysis by information theory was compared with the previous rating of characters made by Aberg and Wiebe and was found to differ significantly. Numerous trials of character analysis by spatial autocorrelation using various Minkowski distances, setting various values among three parameters, never yielded results comparable with those obtained by Aberg and Wiebe. Among those trials, a few combinations of values for the three parameters (X, Y, and Z) yielded results comparable with those obtained with character analysis by information theory. Those same combinations of values were found by Estabrook and Gates (Taxon, 33: 13–25) in their study of Banisteriopsis in 1984, where they also developed the method of character analysis by spatial autocorrelation. Kernel weight was found to be the most important character.


2009 ◽  
Vol 57 (1) ◽  
pp. 131-146 ◽  
Author(s):  
Y. Shakhatreh ◽  
N. Haddad ◽  
M. Alrababah ◽  
S. Grando ◽  
S. Ceccarelli

2022 ◽  
Vol 101 (1) ◽  
Author(s):  
Allo A. Dido ◽  
M. S. R. Krishna ◽  
Ermias Assefa ◽  
Dawit T. Degefu ◽  
B. J. K. Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document