scholarly journals Spatial scale of receptive fields in the visual sector of the cat thalamic reticular nucleus

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Cristina Soto-Sánchez ◽  
Xin Wang ◽  
Vishal Vaingankar ◽  
Friedrich T. Sommer ◽  
Judith A. Hirsch
2020 ◽  
Author(s):  
Gregory Born ◽  
Sinem Erisken ◽  
Felix A. Schneider ◽  
Agne Klein ◽  
Milad H. Mobarhan ◽  
...  

ABSTRACTEn route from retina to cortex, visual information travels through the dorsolateral geniculate nucleus of the thalamus (dLGN), where extensive cortico-thalamic (CT) feedback has been suggested to modulate spatial processing. How this modulation arises from direct excitatory and indirect inhibitory CT feedback components remains enigmatic. We show that in awake mice topographically organized cortical feedback modulates spatial integration in dLGN by sharpening receptive fields (RFs) and increasing surround suppression. Guided by a network model revealing wide-scale inhibitory CT feedback necessary to reproduce these effects, we targeted the visual sector of the thalamic reticular nucleus (visTRN) for recordings. We found that visTRN neurons have large receptive fields, show little surround suppression, and have strong feedback-dependent responses to large stimuli, making them an ideal candidate for mediating feedback-enhanced surround suppression in dLGN. We conclude that cortical feedback sculpts spatial integration in dLGN, likely via recruitment of neurons in visTRN.


1986 ◽  
Vol 55 (5) ◽  
pp. 1030-1043 ◽  
Author(s):  
A. Shosaku

Spontaneous activities of vibrissa-responding neurons in the rat ventrobasal complex (VB) and somatosensory part of the thalamic reticular nucleus (S-TR) were simultaneously recorded and subjected to cross-correlation analysis to investigate the functional organization of recurrent inhibitory action of the S-TR on VB neurons. Excitatory and/or inhibitory interactions were found between approximately 75% (25/34) of the pairs of S-TR and VB neurons with receptive fields (RFs) on the same vibrissa. In contrast, there was no significant interaction between 54 pairs of neurons having RFs on different vibrissae. Among the pairs of neurons with RFs on the same vibrissa, there were four types of correlations, which indicate the following connections: monosynaptic excitation from a VB to an S-TR neuron (7 pairs), monosynaptic inhibition from an S-TR to a VB neuron (10 pairs), reciprocal connection combining the above two types (7 pairs), and common excitation in addition to inhibition from an S-TR to a VB neuron (1 pair). Examples of divergence and convergence of connections between S-TR and VB neurons were demonstrated by testing one S-TR (VB) neuron with more than one VB (S-TR) neuron. Vibrissa-suppressed VB cells, which had exclusively inhibitory RFs, were included in eight pairs of the above samples. These VB cells were more likely to receive inhibitory inputs from S-TR neurons than other VB neurons. Cells with RFs on multiple vibrissae were included in the other 10 pairs. These multiple-vibrissa cells had no interaction with single-vibrissa cells but did with multiple-vibrissa cells. From the incidence of four types of correlation between S-TR and VB neurons with RFs on the same vibrissa, the following connection pattern is suggested: One S-TR neuron receives excitatory inputs from approximately 40% of the VB neurons with RFs on the same vibrissa and sends inhibitory outputs to approximately 55%. Since these two groups of VB neurons were overlapping, the S-TR neuron has reciprocal connections with approximately 20% of the VB neurons with RFs on the same vibrissa. The same estimate was applied to connectivity of one VB neuron. These results indicate that both inputs and outputs of S-TR neurons are precisely and topographically organized, although there is convergence to and divergence from a substantial number of VB neurons with RFs on the same vibrissa. It is proposed that the recurrent inhibitory circuit through the S-TR plays a role in improving discrimination of sensory information transmitted through the VB.


2014 ◽  
Vol 112 (1) ◽  
pp. 181-192 ◽  
Author(s):  
Vladimir Marlinski ◽  
Irina N. Beloozerova

This study examined the burst firing of neurons in the motor sector of the thalamic reticular nucleus (RE) of the cat. These neurons are inhibitory cells that project to the motor thalamus. The firing activity of RE neurons was studied during four behaviors: sleep, standing, walking on a flat surface, and accurate stepping on crosspieces of a horizontal ladder. Extracellularly recorded firing activity was analyzed in 58 neurons that were identified according to their receptive fields on the contralateral forelimb. All neurons generated bursts of spikes during sleep, half generated bursts of spikes during standing, and one-third generated bursts of spikes during walking. The majority of bursts were sequences of spikes with an exponential buildup of the firing rate followed by exponential decay with time constants in the range of 10–30 ms. We termed them “full-scale” bursts. All neurons also generated “atypical” bursts, in which the buildup of the firing rate deviated from the characteristic order. Burst firing was most likely to occur in neurons with receptive fields on the distal forelimb and least likely in neurons related to the proximal limb. Full-scale bursts were more frequent than atypical bursts during unconstrained walking on the flat surface. Bursts of both types occurred with similar probability during accurate stepping on the horizontal ladder, a task that requires forebrain control of locomotion. We suggest that transformations of the temporal pattern of bursts in the inhibitory RE neurons facilitate the tuning of thalamo-cortical signals to the complexity of ongoing locomotor tasks.


2018 ◽  
Vol 92 (3-4) ◽  
pp. 142-166 ◽  
Author(s):  
Michael B. Pritz

The thalamic reticular nucleus in reptiles, Caiman crocodilus, shares a number of morphological similarities with its counterpart in mammals. In view of the immunohistochemical properties of this nucleus in mammals and the more recently identified complexity of this neuronal aggregate in Caiman, this nucleus was investigated using a number of antibodies. These results were compared with findings described for other amniotes. The following antibodies gave consistent and reproducible results: polyclonal sheep anti-parvalbumin (PV), monoclonal mouse anti-PV, and polyclonal sheep anti-glutamic acid decarboxylase (GAD). In the transverse plane, this nucleus is divided into two. In each part, a compact group of cells sits on top of the fibers of the forebrain bundle with scattered cells among these fibers. In the lateral forebrain bundle, this neuronal aggregate is represented by the dorsal peduncular nucleus and the perireticular nucleus while, in the medial forebrain bundle, these parts are the interstitial nucleus and the scattered cells in this fiber tract. The results of this study are the following. First, the thalamic reticular nucleus of Caiman contains GAD(+) and PV(+) neurons, which is similar to what has been described in other amniotes. Second, the morphology and distribution of many GAD(+) and PV(+) neurons in the dorsal peduncular and perireticular nuclei are similar and suggest that these neurons colocalize these markers. Third, neurons in the interstitial nucleus and in the medial forebrain bundle are GAD(+) and PV(+). At the caudal pole of the thalamic reticular nucleus, PV immunoreactive cells predominated and avoided the central portion of this nucleus where GAD(+) cells were preferentially located. However, GAD(+) cells were sparse when compared with PV(+) cells. This immunohistochemically different area in the caudal pole is considered to be an area separate from the thalamic reticular nucleus.


2021 ◽  
Vol 29 ◽  
pp. 455-461
Author(s):  
Bing Hu ◽  
Zhizhi Wang ◽  
Minbo Xu ◽  
Luyao Zhu ◽  
Dingjiang Wang

BACKGROUND: The selection of optimal target areas in the surgical treatment of epilepsy is always a difficult problem in medicine. OBJECTIVE: We employed a theoretical calculation model to explore the control mechanism of seizures by an external voltage stimulus acting in different nerve nuclei. METHODS: Theoretical analysis and numerical simulation were combined. RESULTS: The globus pallidus, excitatory pyramidal neurons, striatal D1 neurons, thalamic reticular nucleus and specific relay nuclei were selected, we analyzed that the electrical stimulation has different effects in these target areas. CONCLUSIONS: The data selected were reasonable in study, the results may give a theoretical support for similar studies in clinical.


2020 ◽  
Vol 124 (2) ◽  
pp. 404-417 ◽  
Author(s):  
Peter W. Campbell ◽  
Gubbi Govindaiah ◽  
Sean P. Masterson ◽  
Martha E. Bickford ◽  
William Guido

The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.


1993 ◽  
Vol 13 (4) ◽  
pp. 558-567 ◽  
Author(s):  
Douglas T. Ross ◽  
David I. Graham

Neurons in the portion of the human thalamic reticular nucleus (RT) associated with the prefrontal cortex and mediodorsal thalamic nuclei were found to be selectively vulnerable to ischemic neuronal damage following relatively short (≤5-min) duration cardiac arrest. In contrast, selective sparing of these RT neurons occurred in cases with longer (>10-min) duration of arrest that was sufficient to produce extensive ischemic neuronal damage throughout the cerebral cortex and thalamic relay nuclei. The selective degeneration of RT neurons appears to require the sustained activity of corticothalamic or thalamocortical projections to the RT following the ischemic insult. Loss of RT neurons associated with the frontal cortex and mediodorsal thalamus may be the biological basis of some types of persisting cognitive deficits in attentional processing experienced by patients following cardiac arrest, open heart surgery, or other forms of brief global cerebral ischemia.


Neuroreport ◽  
1999 ◽  
Vol 10 (3) ◽  
pp. 541-546 ◽  
Author(s):  
Gianni Bregola ◽  
Sanzio Candeletti ◽  
Patrizia Romualdi ◽  
Michele Simonato

Sign in / Sign up

Export Citation Format

Share Document