scholarly journals Digital microfluidic isolation of single cells for -Omics

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julian Lamanna ◽  
Erica Y. Scott ◽  
Harrison S. Edwards ◽  
M. Dean Chamberlain ◽  
Michael D. M. Dryden ◽  
...  

Abstract We introduce Digital microfluidic Isolation of Single Cells for -Omics (DISCO), a platform that allows users to select particular cells of interest from a limited initial sample size and connects single-cell sequencing data to their immunofluorescence-based phenotypes. Specifically, DISCO combines digital microfluidics, laser cell lysis, and artificial intelligence-driven image processing to collect the contents of single cells from heterogeneous populations, followed by analysis of single-cell genomes and transcriptomes by next-generation sequencing, and proteomes by nanoflow liquid chromatography and tandem mass spectrometry. The results described herein confirm the utility of DISCO for sequencing at levels that are equivalent to or enhanced relative to the state of the art, capable of identifying features at the level of single nucleotide variations. The unique levels of selectivity, context, and accountability of DISCO suggest potential utility for deep analysis of any rare cell population with contextual dependencies.

Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 240 ◽  
Author(s):  
Prashant N. M. ◽  
Hongyu Liu ◽  
Pavlos Bousounis ◽  
Liam Spurr ◽  
Nawaf Alomran ◽  
...  

With the recent advances in single-cell RNA-sequencing (scRNA-seq) technologies, the estimation of allele expression from single cells is becoming increasingly reliable. Allele expression is both quantitative and dynamic and is an essential component of the genomic interactome. Here, we systematically estimate the allele expression from heterozygous single nucleotide variant (SNV) loci using scRNA-seq data generated on the 10×Genomics Chromium platform. We analyzed 26,640 human adipose-derived mesenchymal stem cells (from three healthy donors), sequenced to an average of 150K sequencing reads per cell (more than 4 billion scRNA-seq reads in total). High-quality SNV calls assessed in our study contained approximately 15% exonic and >50% intronic loci. To analyze the allele expression, we estimated the expressed variant allele fraction (VAFRNA) from SNV-aware alignments and analyzed its variance and distribution (mono- and bi-allelic) at different minimum sequencing read thresholds. Our analysis shows that when assessing positions covered by a minimum of three unique sequencing reads, over 50% of the heterozygous SNVs show bi-allelic expression, while at a threshold of 10 reads, nearly 90% of the SNVs are bi-allelic. In addition, our analysis demonstrates the feasibility of scVAFRNA estimation from current scRNA-seq datasets and shows that the 3′-based library generation protocol of 10×Genomics scRNA-seq data can be informative in SNV-based studies, including analyses of transcriptional kinetics.


2016 ◽  
Author(s):  
Olivier Poirion ◽  
Xun Zhu ◽  
Travers Ching ◽  
Lana X. Garmire

AbstractDespite its popularity, characterization of subpopulations with transcript abundance is subject to a significant amount of noise. We propose to use effective and expressed nucleotide variations (eeSNVs) from scRNA-seq as alternative features for tumor subpopulation identification. We developed a linear modeling framework, SSrGE, to link eeSNVs associated with gene expression. In all the datasets tested, eeSNVs achieve better accuracies than gene expression for identifying subpopulations. Previously validated cancer-relevant genes are also highly ranked, confirming the significance of the method. Moreover, SSrGE is capable of analyzing coupled DNA-seq and RNA-seq data from the same single cells, demonstrating its value in integrating multi-omics single cell techniques. In summary, SNV features from scRNA-seq data have merits for both subpopulation identification and linkage of genotype-phenotype relationship. The method SSrGE is available at https://github.com/lanagarmire/SSrGE.


2021 ◽  
Author(s):  
Aaron Wing Cheung Kwok ◽  
Chen Qiao ◽  
Rongting Huang ◽  
Mai-Har Sham ◽  
Joshua W. K. Ho ◽  
...  

AbstractMitochondrial mutations are increasingly recognised as informative endogenous genetic markers that can be used to reconstruct cellular clonal structure using single-cell RNA or DNA sequencing data. However, there is a lack of effective computational methods to identify informative mtDNA variants in noisy and sparse single-cell sequencing data. Here we present an open source computational tool MQuad that accurately calls clonally informative mtDNA variants in a population of single cells, and an analysis suite for complete clonality inference, based on single cell RNA or DNA sequencing data. Through a variety of simulated and experimental single cell sequencing data, we showed that MQuad can identify mitochondrial variants with both high sensitivity and specificity, outperforming existing methods by a large extent. Furthermore, we demonstrated its wide applicability in different single cell sequencing protocols, particularly in complementing single-nucleotide and copy-number variations to extract finer clonal resolution. MQuad is a Python package available via https://github.com/single-cell-genetics/MQuad.


2017 ◽  
Author(s):  
Craig L. Bohrson ◽  
Allison R. Barton ◽  
Michael A. Lodato ◽  
Rachel E. Rodin ◽  
Vinay Viswanadham ◽  
...  

AbstractWhole-genome sequencing of DNA from single cells has the potential to reshape our understanding of the mutational heterogeneity in normal and disease tissues. A major difficulty, however, is distinguishing artifactual mutations that arise from DNA isolation and amplification from true mutations. Here, we describe linked-read analysis (LiRA), a method that utilizes phasing of somatic single nucleotide variants with nearby germline variants to identify true mutations, thereby allowing accurate estimation of somatic mutation rates at the single cell level.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David Lähnemann ◽  
Johannes Köster ◽  
Ute Fischer ◽  
Arndt Borkhardt ◽  
Alice C. McHardy ◽  
...  

AbstractAccurate single cell mutational profiles can reveal genomic cell-to-cell heterogeneity. However, sequencing libraries suitable for genotyping require whole genome amplification, which introduces allelic bias and copy errors. The resulting data violates assumptions of variant callers developed for bulk sequencing. Thus, only dedicated models accounting for amplification bias and errors can provide accurate calls. We present ProSolo for calling single nucleotide variants from multiple displacement amplified (MDA) single cell DNA sequencing data. ProSolo probabilistically models a single cell jointly with a bulk sequencing sample and integrates all relevant MDA biases in a site-specific and scalable—because computationally efficient—manner. This achieves a higher accuracy in calling and genotyping single nucleotide variants in single cells in comparison to state-of-the-art tools and supports imputation of insufficiently covered genotypes, when downstream tools cannot handle missing data. Moreover, ProSolo implements the first approach to control the false discovery rate reliably and flexibly. ProSolo is implemented in an extendable framework, with code and usage at: https://github.com/prosolo/prosolo


2020 ◽  
Author(s):  
Ziwei Chen ◽  
Fuzhou Gong ◽  
Lin Wan ◽  
Liang Ma

AbstractThe rapid development of single-cell DNA sequencing (scDNA-seq) technology has greatly enhanced the resolution of tumor cell profiling, providing an unprecedented perspective in characterizing intra-tumoral heterogeneity and understanding tumor progression and metastasis. However, prominent algorithms for constructing tumor phylogeny based on scDNA-seq data usually only take single nucleotide variations (SNVs) as markers, failing to consider the effect caused by copy number alterations (CNAs). Here, we propose BiTSC2, Bayesian inference of Tumor clonal Tree by joint analysis of Single-Cell SNV and CNA data. BiTSC2 takes raw reads from scDNA-seq as input, accounts for sequencing errors, models dropout rate and assigns single cells into subclones. By applying Markov Chain Monte Carlo (MCMC) sampling, BiTSC2 can simultaneously estimate the subclonal scCNA and scSNV genotype matrices, sub-clonal assignments and tumor subclonal evolutionary tree. In comparison with existing methods on synthetic and real tumor data, BiTSC2 shows high accuracy in genotype recovery and sub-clonal assignment. BiTSC2 also performs robustly in dealing with scDNA-seq data with low sequencing depth and variant dropout rate.


2020 ◽  
Author(s):  
David Lähnemann ◽  
Johannes Köster ◽  
Ute Fischer ◽  
Arndt Borkhardt ◽  
Alice C. McHardy ◽  
...  

ABSTRACTObtaining accurate mutational profiles from single cell DNA is essential for the analysis of genomic cell-to-cell heterogeneity at the finest level of resolution. However, sequencing libraries suitable for genotyping require whole genome amplification, which introduces allelic bias and copy errors. As a result, single cell DNA sequencing data violates the assumptions of variant callers developed for bulk sequencing, which when applied to single cells generate significant numbers of false positives and false negatives. Only dedicated models accounting for amplification bias and errors will be able to provide more accurate calls.We present ProSolo, a probabilistic model for calling single nucleotide variants from multiple displacement amplified single cell DNA sequencing data. It introduces a mechanistically motivated empirical model of amplification bias that improves the quantification of genotyping uncertainty. To account for amplification errors, it jointly models the single cell sample with a bulk sequencing sample from the same cell population—also enabling a biologically relevant imputation of missing genotypes for the single cell. Through these innovations, ProSolo achieves substantially higher performance in calling and genotyping single nucleotide variants in single cells in comparison to all state-of-the-art tools. Moreover, ProSolo implements the first approach to control the false discovery rate reliably and flexibly; not only for single nucleotide variant calls, but also for artefacts of single cell methodology that one may wish to identify, such as allele dropout.ProSolo’s model is implemented into a flexible framework, encouraging extensions. The source code and usage instructions are available at: https://github.com/prosolo/prosolo


2020 ◽  
Author(s):  
Shuo Li ◽  
Zorawar Noor ◽  
Weihua Zeng ◽  
Xiaohui Ni ◽  
Zuyang Yuan ◽  
...  

AbstractLiquid biopsy using cell-free DNA (cfDNA) is attractive for a wide range of clinical applications, including cancer detection, locating, and monitoring. However, developing these applications requires precise and sensitive calling of somatic single nucleotide variations (SNVs) from cfDNA sequencing data. To date, no SNV caller addresses all the special challenges of cfDNA to provide reliable results. Here we present cfSNV, a revolutionary somatic SNV caller with five innovative techniques to overcome and exploit the unique properties of cfDNA. cfSNV provides hierarchical mutation profiling, thanks to cfDNA’s complete coverage of the clonal landscape, and multi-layer error suppression. In both simulated datasets and real patient data, we demonstrate that cfSNV is superior to existing tools, especially for low-frequency somatic SNVs. We also show how the five novel techniques contribute to its performance. Further, we demonstrate a clinical application using cfSNV to select non-small-cell lung cancer patients for immunotherapy treatment.


2019 ◽  
Author(s):  
Imad Abugessaisa ◽  
Shuhei Noguchi ◽  
Melissa Cardon ◽  
Akira Hasegawa ◽  
Kazuhide Watanabe ◽  
...  

AbstractAnalysis and interpretation of single-cell RNA-sequencing (scRNA-seq) experiments are compromised by the presence of poor quality cells. For meaningful analyses, such poor quality cells should be excluded to avoid biases and large variation. However, no clear guidelines exist. We introduce SkewC, a novel quality-assessment method to identify poor quality single-cells in scRNA-seq experiments. The method is based on the assessment of gene coverage for each single cell and its skewness as a quality measure. To validate the method, we investigated the impact of poor quality cells on downstream analyses and compared biological differences between typical and poor quality cells. Moreover, we measured the ratio of intergenic expression, suggesting genomic contamination, and foreign organism contamination of single-cell samples. SkewC is tested in 37,993 single-cells generated by 15 scRNA-seq protocols. We envision SkewC as an indispensable QC method to be incorporated into scRNA-seq experiment to preclude the possibility of scRNA-seq data misinterpretation.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i186-i193
Author(s):  
Matthew A Myers ◽  
Simone Zaccaria ◽  
Benjamin J Raphael

Abstract Motivation Recent single-cell DNA sequencing technologies enable whole-genome sequencing of hundreds to thousands of individual cells. However, these technologies have ultra-low sequencing coverage (<0.5× per cell) which has limited their use to the analysis of large copy-number aberrations (CNAs) in individual cells. While CNAs are useful markers in cancer studies, single-nucleotide mutations are equally important, both in cancer studies and in other applications. However, ultra-low coverage sequencing yields single-nucleotide mutation data that are too sparse for current single-cell analysis methods. Results We introduce SBMClone, a method to infer clusters of cells, or clones, that share groups of somatic single-nucleotide mutations. SBMClone uses a stochastic block model to overcome sparsity in ultra-low coverage single-cell sequencing data, and we show that SBMClone accurately infers the true clonal composition on simulated datasets with coverage at low as 0.2×. We applied SBMClone to single-cell whole-genome sequencing data from two breast cancer patients obtained using two different sequencing technologies. On the first patient, sequenced using the 10X Genomics CNV solution with sequencing coverage ≈0.03×, SBMClone recovers the major clonal composition when incorporating a small amount of additional information. On the second patient, where pre- and post-treatment tumor samples were sequenced using DOP-PCR with sequencing coverage ≈0.5×, SBMClone shows that tumor cells are present in the post-treatment sample, contrary to published analysis of this dataset. Availability and implementation SBMClone is available on the GitHub repository https://github.com/raphael-group/SBMClone. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document