scholarly journals Harmful R-loops are prevented via different cell cycle-specific mechanisms

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta San Martin-Alonso ◽  
María E. Soler-Oliva ◽  
María García-Rubio ◽  
Tatiana García-Muse ◽  
Andrés Aguilera

AbstractIdentifying how R-loops are generated is crucial to know how transcription compromises genome integrity. We show by genome-wide analysis of conditional yeast mutants that the THO transcription complex, prevents R-loop formation in G1 and S-phase, whereas the Sen1 DNA-RNA helicase prevents them only in S-phase. Interestingly, damage accumulates asymmetrically downstream of the replication fork in sen1 cells but symmetrically in the hpr1 THO mutant. Our results indicate that: R-loops form co-transcriptionally independently of DNA replication; that THO is a general and cell-cycle independent safeguard against R-loops, and that Sen1, in contrast to previously believed, is an S-phase-specific R-loop resolvase. These conclusions have important implications for the mechanism of R-loop formation and the role of other factors reported to affect on R-loop homeostasis.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 283-283
Author(s):  
Andre M. Pilon ◽  
Elliott H. Margulies ◽  
Hatice Ozel Abaan ◽  
Amy Werner- Allen ◽  
Tim M. Townes ◽  
...  

Abstract Erythroid Kruppel-Like Factor (EKLF; KLF1) is the founding member of the Kruppel family of transcription factors, with 3 C2H2 zinc-fingers that bind a 9-base consensus sequence (NCNCNCCCN). The functions of EKLF, first identified as an activator of the beta-globin locus, include gene activation and chromatin remodeling. Our knowledge of genes regulated by EKLF is limited, as EKLF-deficient mice die by embryonic day 15 (E15), due to a severe anemia. Analysis of E13.5 wild type and EKLF-deficient fetal liver (FL) erythroid cells revealed that EKLF-deficient cells fail to complete terminal erythroid maturation (Pilon et al. submitted). Coupling chromatin immunoprecipitation and ultra high-throughput massively parallel sequencing (ChIP-seq) is increasingly being used for mapping protein-DNA interactions in vivo on a genome-wide scale. ChIP-seq allows a simultaneous analysis of transcription factor binding in every region of the genome, defining an “interactome”. To elucidate direct EKLF-dependent effects on erythropoiesis, we have combined ChIP-seq with expression array (“transcriptome”) analyses. We feel that integration of ChIP-seq and microarray data can provide us detailed knowledge of the role of EKLF in erythropoiesis. Chromatin was isolated from E13.5 FL cells of mice whose endogenous EKLF gene was replaced with a fully functional HA-tagged EKLF gene. ChIP was performed using a highly specific high affinity anti-HA antibody. A library of EKLF-bound FL chromatin enriched by anti-HA IP was created and subjected to fluorescent in situ sequencing on a Solexa 1G platform, providing 36-base signatures that were mapped to unique sites in the mouse genome, defining the EKLF “interactome.” The frequency with which a given signature appears provides a measurable peak of enrichment. We performed three biological/technical replicates and analyzed each data set individually as well as the combined data. To validate ChIP-seq results, we examined the locus of a known EKLF target gene, a-hemoglobin stabilizing protein (AHSP). Peaks corresponded to previously identified DNase hypersensitive sites, regions of histone hyperacetylation, and sites of promoter-occupancy determined by ChIP-PCR. A genome wide analysis, focusing on the regions with the highest EKLF occupancy revealed a set of 531 locations where high levels EKLF binding occurs. Of these sites, 119 (22%) are located 10 kb or more from the nearest gene and are classified as intergenic EKLF binding sites. Another 78 sites (14.6%) are within 10 kb of an annotated RefSeq gene. A plurality of the binding sites, 222 (42%), are within RefSeq coordinates and are classified as intragenic EKLF binding sites. Microarray profiling of mRNA from sorted, matched populations of dE13.5 WT and EKLF-deficient FL erythroid progenitor cells showed dysregulation of >3000 genes (p<0.05). Ingenuity Pathways Analysis (IPA) of the >3000 dysregulated mRNAs indicated significant alteration of a cell cycle-control network, centered about the transcription factor, E2f2. We confirmed significantly decreased E2f2 mRNA and protein levels by real-time PCR and Western blot, respectively; demonstrated that EKLF-deficient FL cells accumulate in G0/G1 by cell cycle analysis; and verified EKLF-binding to motifs within the E2f2 promoter by ChIP-PCR and analysis of the ChIP Seq data. We hypothesized that only a subset of the 3000 dysregulated genes would be direct EKLF targets. We limited the ChIP-seq library to display the top 5% most frequently represented fragments across the genome, and applied this criterion to the network of dysregulated mRNAs in the IPA cell cycle network. ChIP-seq identified peaks of EKLF association with 60% of the loci in this pathway. However, consistent with the role of EKLF as a transcriptional activator, 95% of the occupied genomic loci corresponded to mRNAs whose expression in EKLF-deficient FL cells was significantly decreased (p<0.05). The majority (59%) of these EKLF-bound sites were located at intragenic sites (i.e., introns), while a minority (15% and 26%) were found adjacent to the genes or in intergenic regions. We have shown that both the AHSP and E2f2 loci require EKLF to cause the locus to become activated and sensitive to DNase I digestion in erythroid cells. Based on the increased frequency of intragenic EKLF-binding sites, particularly in genes of the cell cycle network, we propose that the occupancy of intragenic sites by EKLF may facilitate chromatin modification.


Author(s):  
Sangin Kim ◽  
Nalae Kang ◽  
Su Hyung Park ◽  
James Wells ◽  
Taejoo Hwang ◽  
...  

Abstract R-loops are formed when replicative forks collide with the transcriptional machinery and can cause genomic instability. However, it is unclear how R-loops are regulated at transcription-replication conflict (TRC) sites and how replisome proteins are regulated to prevent R-loop formation or mediate R-loop tolerance. Here, we report that ATAD5, a PCNA unloader, plays dual functions to reduce R-loops both under normal and replication stress conditions. ATAD5 interacts with RNA helicases such as DDX1, DDX5, DDX21 and DHX9 and increases the abundance of these helicases at replication forks to facilitate R-loop resolution. Depletion of ATAD5 or ATAD5-interacting RNA helicases consistently increases R-loops during the S phase and reduces the replication rate, both of which are enhanced by replication stress. In addition to R-loop resolution, ATAD5 prevents the generation of new R-loops behind the replication forks by unloading PCNA which, otherwise, accumulates and persists on DNA, causing a collision with the transcription machinery. Depletion of ATAD5 reduces transcription rates due to PCNA accumulation. Consistent with the role of ATAD5 and RNA helicases in maintaining genomic integrity by regulating R-loops, the corresponding genes were mutated or downregulated in several human tumors.


2021 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Xiao Li ◽  
Fen Wang ◽  
Yanyan Xu ◽  
Guijun Liu ◽  
Caihong Dong

Hydrophobins are a family of small secreted proteins found exclusively in fungi, and they play various roles in the life cycle. In the present study, genome wide analysis and transcript profiling of the hydrophobin family in Cordyceps militaris, a well-known edible and medicinal mushroom, were studied. The distribution of hydrophobins in ascomycetes with different lifestyles showed that pathogenic fungi had significantly more hydrophobins than saprotrophic fungi, and class II members accounted for the majority. Phylogenetic analysis of hydrophobin proteins from the species of Cordyceps s.l. indicated that there was more variability among the class II members than class I. Only a few hydrophobin-encoding genes evolved by duplication in Cordyceps s.l., which was inconsistent with the important role of gene duplication in basidiomycetes. Different transcript patterns of four hydrophobin-encoding genes during the life cycle indicated the possible different functions for each. The transcripts of Cmhyd2, 3 and 4 can respond to light and were related with the photoreceptors. CmQHYD, with four hydrophobin II domains, was first found in C. militaris, and multi-domain hydrophobins were only distributed in the species of Cordycipitaceae and Clavicipitaceae. These results could be helpful for further function research of hydrophobins and could provide valuable information for the evolution of hydrophobins.


2021 ◽  
Vol 19 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Md. Tanvir Kabir ◽  
Maroua Jalouli ◽  
Md. Ataur Rahman ◽  
Philippe Jeandet ◽  
...  

: Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can in turn induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.


1980 ◽  
Vol 85 (1) ◽  
pp. 108-115 ◽  
Author(s):  
C J Rivin ◽  
W L Fangman

When the growth rate of the yeast Saccharomyces cerevisiae is limited with various nitrogen sources, the duration of the S phase is proportional to cell cycle length over a fourfold range of growth rates (C.J. Rivin and W. L. Fangman, 1980, J. Cell Biol. 85:96-107). Molecular parameters of the S phases of these cells were examined by DNA fiber autoradiography. Changes in replication fork rate account completely for the changes in S-phase duration. No changes in origin-to-origin distances were detected. In addition, it was found that while most adjacent replication origins are activated within a few minutes of each other, new activations occur throughout the S phase.


2019 ◽  
Vol 218 (9) ◽  
pp. 2865-2875 ◽  
Author(s):  
Jone Michelena ◽  
Marco Gatti ◽  
Federico Teloni ◽  
Ralph Imhof ◽  
Matthias Altmeyer

The DNA replication machinery frequently encounters impediments that slow replication fork progression and threaten timely and error-free replication. The CHK1 protein kinase is essential to deal with replication stress (RS) and ensure genome integrity and cell survival, yet how basal levels and activity of CHK1 are maintained under physiological, unstressed conditions is not well understood. Here, we reveal that CHK1 stability is controlled by its steady-state activity during unchallenged cell proliferation. This autoactivatory mechanism, which depends on ATR and its coactivator ETAA1 and is tightly associated with CHK1 autophosphorylation at S296, counters CHK1 ubiquitylation and proteasomal degradation, thereby preventing attenuation of S-phase checkpoint functions and a compromised capacity to respond to RS. Based on these findings, we propose that steady-state CHK1 activity safeguards its stability to maintain intrinsic checkpoint functions and ensure genome integrity and cell survival.


Sign in / Sign up

Export Citation Format

Share Document