scholarly journals Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John DeSisto ◽  
John T. Lucas ◽  
Ke Xu ◽  
Andrew Donson ◽  
Tong Lin ◽  
...  

AbstractRadiation-induced high-grade gliomas (RIGs) are an incurable late complication of cranial radiation therapy. We performed DNA methylation profiling, RNA-seq, and DNA sequencing on 32 RIG tumors and an in vitro drug screen in two RIG cell lines. We report that based on DNA methylation, RIGs cluster primarily with the pediatric receptor tyrosine kinase I high-grade glioma subtype. Common copy-number alterations include Chromosome (Ch.) 1p loss/1q gain, and Ch. 13q and Ch. 14q loss; focal alterations include PDGFRA and CDK4 gain and CDKN2A and BCOR loss. Transcriptomically, RIGs comprise a stem-like subgroup with lesser mutation burden and Ch. 1p loss and a pro-inflammatory subgroup with greater mutation burden and depleted DNA repair gene expression. Chromothripsis in several RIG samples is associated with extrachromosomal circular DNA-mediated amplification of PDGFRA and CDK4. Drug screening suggests microtubule inhibitors/stabilizers, DNA-damaging agents, MEK inhibition, and, in the inflammatory subgroup, proteasome inhibitors, as potentially effective therapies.

2019 ◽  
Author(s):  
John DeSisto ◽  
John T. Lucas ◽  
Ke Xu ◽  
Andrew Donson ◽  
Tong Lin ◽  
...  

AbstractTreatment-induced high-grade gliomas (TIHGGs) are an incurable late complication of cranial radiation therapy or combined radiation/chemotherapy used to treat pediatric cancer. We assembled a cohort of 33 TIHGGs from multiple institutions. The primary antecedent malignancies were medulloblastoma, acute lymphoblastic leukemia, astrocytoma, and ependymoma. We performed methylation profiling, RNA-seq, and genomic sequencing (whole-genome or whole-exome) on TIHGG samples. Methylation profiling revealed that TIHGGs cluster primarily with the pediatric receptor tyrosine kinase I subtype (26/31 samples). Common TIHGG copy-number alterations include Chromosome (Ch.) 1p loss/1q gain, Ch. 4 loss, Ch. 6q loss, and Ch. 13 and Ch. 14 loss; focal alterations include PDGFRA and CDK4 gain and loss of CDKN2A and BCOR. Relative to de novo pediatric high-grade glioma (pHGG), BCOR loss (p=0.004) and CDKN2A loss (p=0.005) were significantly increased. Transcriptomic analysis identified two distinct TIHGG subgroups, one with a lesser mutation burden (0.12 mut/Mb), Ch. 1p loss/1q gain (5/6 samples), and stem cell characteristics, and one with a greater mutation burden (1.08 mut/Mb, p<0.0002), depletion of DNA repair pathways, and inflammatory characteristics. We observed increased chromothripsis in TIHGG versus pHGG (67% vs. 31%, p=0.036), which was associated with extrachromosomal circular DNA-mediated amplification of PDGFRA and CDK4. In vitro drug screening in one primary, patient-derived TIHGG cell line from each expression subgroup identified microtubule inhibitors/stabilizers, DNA-damaging agents, MEK inhibition, and, in the inflammatory subgroup, proteasome inhibitors as potentially effective therapies. This study provides a comprehensive molecular profile of TIHGG, including mechanistic insights to TIHGG oncogenesis, and identifies potentially effective therapeutic modalities for further investigation.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 12509-12509
Author(s):  
J. Sadones ◽  
A. Michotte ◽  
C. Chaskis ◽  
P. In ’t Veld ◽  
S. Califice ◽  
...  

12509 Background: Epigenetic silencing of the MGMT (O6-methylguanine-DNA methyltransferase) DNA-repair gene by promotor hypermethylation (MGMT-meth) compromises DNA repair of high-grade glioma (HGG) and has been associated with a survival benefit in patients treated with temozolomide (TMZ) for newly diagnosed glioblastoma multiforme (GBM). It remains undetermined if the MGMT-meth status correlates with response to temozolomide at recurrence and whether extended dosing of TMZ (known to deplete MGMT in peripheral blood mononuclear cells) can overcome resistance in unmethylated HGG. Methods: We are investigating the MGMT-meth status on glioma tissue samples collected at diagnosis from 64 patients (pts). Fifty pts were treated at the time of recurrence with conventional TMZ (5 out of 28d regimen) and 14 pts with extended dosing of TMZ (100 mg/m2/d, 21 out of 28d regimen). Following DNA isolation from archival glioma tissues by phenol/chloroform extraction and a bisulphite conversion of genomic DNA, real-time methylation-specific PCR quantification of the methylation status of the MGMT promotor region is performed by OncoMethylome Sciences S.A. (according to OMS proprietary methodology). Results: At present, results have been obtained for 15 pts (13 M/ 2 W, median age: 46y). From 3 pts a biopsy at recurrence was available for analysis. The result was discordant with the MGMT-meth status at diagnosis in 2 pts (1x meth to unmeth and 1x unmeth to meth). Of the 6 (40%) pts with MGMT-meth gliomas, none had immediate progression on TMZ (respectively 4x SD, 1x CR, 1x PR). Of the 9 pts with an unmethylated MGMT promotor, 4 pts had immediate progression on TMZ and 5 pts had SD (of which 4 had been treated with the 21/28d regimen). All pts, except one, with MGMT-meth had a TTP that was above the median of our study population. The two pts with an MGMT-unmeth status that had a TTP above the median had received the extended dosing regimen. Conclusions: Our preliminary data indicate that MGMT promotor hypermethylation at diagnosis might correlate with sensitivity to TMZ in the recurrent setting. Extended dosing of TMZ might be more active against MGMT-unmethylated glioma. Final data from this study will be available for presentation at the meeting. No significant financial relationships to disclose.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert Terziev ◽  
Dimitri Psimaras ◽  
Yannick Marie ◽  
Loic Feuvret ◽  
Giulia Berzero ◽  
...  

AbstractThe incidence and risk factors associated with radiation-induced leukoencephalopathy (RIL) in long-term survivors of high-grade glioma (HGG) are still poorly investigated. We performed a retrospective research in our institutional database for patients with supratentorial HGG treated with focal radiotherapy, having a progression-free overall survival > 30 months and available germline DNA. We reviewed MRI scans for signs of leukoencephalopathy on T2/FLAIR sequences, and medical records for information on cerebrovascular risk factors and neurological symptoms. We investigated a panel of candidate single nucleotide polymorphisms (SNPs) to assess genetic risk. Eighty-one HGG patients (18 grade IV and 63 grade III, 50M/31F) were included in the study. The median age at the time of radiotherapy was 48 years old (range 18–69). The median follow-up after the completion of radiotherapy was 79 months. A total of 44 patients (44/81, 54.3%) developed RIL during follow-up. Twenty-nine of the 44 patients developed consistent symptoms such as subcortical dementia (n = 28), gait disturbances (n = 12), and urinary incontinence (n = 9). The cumulative incidence of RIL was 21% at 12 months, 42% at 36 months, and 48% at 60 months. Age > 60 years, smoking, and the germline SNP rs2120825 (PPARg locus) were associated with an increased risk of RIL. Our study identified potential risk factors for the development of RIL (age, smoking, and the germline SNP rs2120825) and established the rationale for testing PPARg agonists in the prevention and management of late-delayed radiation-induced neurotoxicity.


2021 ◽  
Vol 22 (6) ◽  
pp. 2962
Author(s):  
Louise Orcheston-Findlay ◽  
Samuel Bax ◽  
Robert Utama ◽  
Martin Engel ◽  
Dinisha Govender ◽  
...  

The life expectancy of patients with high-grade glioma (HGG) has not improved in decades. One of the crucial tools to enable future improvement is advanced models that faithfully recapitulate the tumour microenvironment; they can be used for high-throughput screening that in future may enable accurate personalised drug screens. Currently, advanced models are crucial for identifying and understanding potential new targets, assessing new chemotherapeutic compounds or other treatment modalities. Recently, various methodologies have come into use that have allowed the validation of complex models—namely, spheroids, tumouroids, hydrogel-embedded cultures (matrix-supported) and advanced bioengineered cultures assembled with bioprinting and microfluidics. This review is designed to present the state of advanced models of HGG, whilst focusing as much as is possible on the paediatric form of the disease. The reality remains, however, that paediatric HGG (pHGG) models are years behind those of adult HGG. Our goal is to bring this to light in the hope that pGBM models can be improved upon.


2018 ◽  
Vol 20 (suppl_2) ◽  
pp. i92-i93
Author(s):  
Andrew Dodgshun ◽  
Kohei Fukuoka ◽  
Brittany Campbell ◽  
Melissa Edwards ◽  
Alexandra Sexton-Oates ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Danielsson ◽  
Kristell Barreau ◽  
Teresia Kling ◽  
Magnus Tisell ◽  
Helena Carén

Abstract Background Radiation is an important therapeutic tool. However, radiotherapy has the potential to promote co-evolution of genetic and epigenetic changes that can drive tumour heterogeneity, formation of radioresistant cells and tumour relapse. There is a clinical need for a better understanding of DNA methylation alterations that may follow radiotherapy to be able to prevent the development of radiation-resistant cells. Methods We examined radiation-induced changes in DNA methylation profiles of paediatric glioma stem cells (GSCs) in vitro. Five GSC cultures were irradiated in vitro with repeated doses of 2 or 4 Gy. Radiation was given in 3 or 15 fractions. DNA methylation profiling using Illumina DNA methylation arrays was performed at 14 days post-radiation. The cellular characteristics were studied in parallel. Results Few fractions of radiation did not result in significant accumulation of DNA methylation alterations. However, extended dose fractionations changed DNA methylation profiles and induced thousands of differentially methylated positions, specifically in enhancer regions, sites involved in alternative splicing and in repetitive regions. Radiation induced dose-dependent morphological and proliferative alterations of the cells as a consequence of the radiation exposure. Conclusions DNA methylation alterations of sites with regulatory functions in proliferation and differentiation were identified, which may reflect cellular response to radiation stress through epigenetic reprogramming and differentiation cues.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi29-vi29
Author(s):  
Charles Day ◽  
Florina Grigore ◽  
Alyssa Langfald ◽  
Edward Hinchcliffe ◽  
James Robinson

Abstract H3.3 G34R/V mutations are drivers of high-grade pediatric glioma (pHGG). H3.3 G34R/V mutations are linked to altered H3.3 K36 trimethylation (H3K36me3); implicating epigenetic gene regulation as a possible contributor to pHGG formation. Here we show that H3.3 G34R/V also induces chromosomal instability (CIN); a hallmark of pHGG. If CIN promotes pHGG formation is unknown. We observed that H3.3 G34 mutant pHGG cells have reduced mitotic H3.3 S31 phosphorylation compare to WT H3.3 cell lines. And, H3.3 G34R reduced Chk1 phosphorylation at S31 by &gt;90% in an in vitro kinase assay. Chk1 regulates chromosome segregation through phosphorylation of pericentromeric H3.3 S31 during early mitosis. Overexpression of H3.3 G34R or non-phosphorylatable S31A in H3.3 WT, diploid cells caused a significant increase in CIN. Likewise, H3.3 G34 mutant pHGG cells have significantly elevated rates of CIN as compare to H3.3 WT pHGG cells. During normal cell division, phospho-S31 is lost in anaphase. However, following chromosome missegregation, phospho-S31 spreads and stimulates p53-induced cell cycle arrest. Here we show that WT p53 cells expressing mutant G34 fail to arrest following chromosome mis-segregation. These studies demonstrate that H3.3 G34R/V mutations are sufficient to transform normal, diploid cells into proliferating CIN cells. To determine if this process contributes to tumorigenesis, we used RCAS Nestin-TVA mice to overexpress H3.3 WT, G34R, or S31A – P2A-linked to PDGFB expression in glial precursor cells of newborn mice. Over 100 days, S31A and G34R mice had drastically reduced survival (averaging 77, 81, and 100 days for S31A, G34R, and WT). Furthermore, most G34R and S31A mice developed HGG, while H3.3 WT mice remained tumor-free. Our work implicates CIN as a driver of H3.3 G34 mutant pHGG formation. Our ongoing studies utilize K36M and double mutants to further define the contributions of S31 phosphorylation (CIN) and H3K36me3 (epigenetic gene regulation) to tumorigenesis.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi27-vi27
Author(s):  
Lawrence Recht ◽  
Reena Thomas ◽  
Sophie Bertrand ◽  
Priya Yerballa ◽  
Gordon Li ◽  
...  

Abstract BACKGROUND High-grade gliomas (HGG) are characterized by dysregulated metabolism, utilizing glycolysis for energy production to support unrestricted growth. BPM 31510, an ubidecarenone (coenzyme Q10) containing lipid nanodispersion, causes a switch in cancer energy sourcing from glycolysis towards mitochondrial oxidative phosphorylation in vitro, reversing the Warburg effect and suggesting potential as an anti-tumor agent. The current study is a phase I study of BPM31510 + vitamin K in GB with tumor growth after bevacizumab (BEV). METHODS This is an open-label phase I study of BPM31510 continuous infusion with weekly vitamin K (10mg IM) in HGG patients using an mTPI design, starting at 110mg/kg, allowing for a single dose de-escalation and 2 dose-escalations. Patients had received first-line ChemoRadiation and were in recurrence following a BEV containing regimen. RESULTS 9 eligible and evaluable patients completed the 28 day DLT period. 8 patients had primary GB, 1 had anaplastic astrocytoma with confirmed pathologic transformation to GB. Median age was 55 years (27–67) and median KPS 70 (60–90) at enrollment. 4 patients were treated at the highest dose 171mg/kg, where there was a single DLT: Grade 3 AST & ALT. The most common grade 1–2 AEs possibly, probably or definitely related to drug were elevated AST, rash, and fatigue, each occurring in 3 patients. Median OS for 9 eligible/evaluable patients was 128 days (95% CI: 48–209) while PFS was 34 days (CI of mean 8.9). 3 patients are currently alive; 2 patients have survived >1 year. PK/PD data are being processed and will be presented. CONCLUSION This study confirms that BPM 31510 + vitamin K is safe and feasible in treatment-refractory HGG patients. Though this study demonstrates safety at 171mg/kg, the proposed dose for future studies in GB, based on additional pre-clinical and non-GB clinical data is 88mg/kg.


Author(s):  
Catalin Folcuti ◽  
Cristina Horescu ◽  
Edmond Barcan ◽  
Oana Alexandru ◽  
Cristian Tuta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document