scholarly journals Approaching disorder-tolerant semiconducting polymers

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinwen Yan ◽  
Miao Xiong ◽  
Xin-Yu Deng ◽  
Kai-Kai Liu ◽  
Jia-Tong Li ◽  
...  

AbstractDoping has been widely used to control the charge carrier concentration in organic semiconductors. However, in conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, we screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder. We show that a carefully designed conjugated polymer with a single dominant planar backbone conformation, high torsional barrier at each dihedral angle, and zigzag backbone curvature is highly dopable and can tolerate dopant-induced disorder. With these features, the designed diketopyrrolopyrrole (DPP)-based polymer can be efficiently n-doped and exhibit high n-type electrical conductivities over 120 S cm−1, much higher than the reference polymers with similar chemical structures. This work provides a polymer design concept for highly dopable and highly conductive polymeric semiconductors.

2004 ◽  
Vol 212 (1) ◽  
pp. 209-218 ◽  
Author(s):  
Gytis Juška ◽  
Kristijonas Genevičius ◽  
Kęstutis Arlauskas ◽  
Ronald Österbacka ◽  
Henrik Stubb

2018 ◽  
Vol 20 (13) ◽  
pp. 8897-8908 ◽  
Author(s):  
Waldemar Kaiser ◽  
Tim Albes ◽  
Alessio Gagliardi

Kinetic Monte Carlo study of the impact of spatial and energetic disorder on charge mobility, current distribution and transport energy in organic semiconductors.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


2021 ◽  
Vol 22 (9) ◽  
pp. 4808
Author(s):  
Nitza Soto ◽  
Karoll Ferrer ◽  
Katy Díaz ◽  
César González ◽  
Lautaro Taborga ◽  
...  

Brassinosteroids are polyhydroxysteroids that are involved in different plants’ biological functions, such as growth, development and resistance to biotic and external stresses. Because of its low abundance in plants, much effort has been dedicated to the synthesis and characterization of brassinosteroids analogs. Herein, we report the synthesis of brassinosteroid 24-nor-5β-cholane type analogs with 23-benzoate function and 22,23-benzoate groups. The synthesis was accomplished with high reaction yields in a four-step synthesis route and using hyodeoxycholic acid as starting material. All synthesized analogs were tested using the rice lamina inclination test to assess their growth-promoting activity and compare it with those obtained for brassinolide, which was used as a positive control. The results indicate that the diasteroisomeric mixture of monobenzoylated derivatives exhibit the highest activity at the lowest tested concentrations (1 × 10−8 and 1 × 10−7 M), being even more active than brassinolide. Therefore, a simple synthetic procedure with high reaction yields that use a very accessible starting material provides brassinosteroid synthetic analogs with promising effects on plant growth. This exploratory study suggests that brassinosteroid analogs with similar chemical structures could be a good alternative to natural brassinosteroids.


1994 ◽  
Vol 235-240 ◽  
pp. 539-540
Author(s):  
C. Ström ◽  
S.-G. Eriksson ◽  
J. Albertsson ◽  
N. Winzek

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junsoo Park ◽  
Maxwell Dylla ◽  
Yi Xia ◽  
Max Wood ◽  
G. Jeffrey Snyder ◽  
...  

AbstractBand convergence is considered a clear benefit to thermoelectric performance because it increases the charge carrier concentration for a given Fermi level, which typically enhances charge conductivity while preserving the Seebeck coefficient. However, this advantage hinges on the assumption that interband scattering of carriers is weak or insignificant. With first-principles treatment of electron-phonon scattering in the CaMg2Sb2-CaZn2Sb2 Zintl system and full Heusler Sr2SbAu, we demonstrate that the benefit of band convergence can be intrinsically negated by interband scattering depending on the manner in which bands converge. In the Zintl alloy, band convergence does not improve weighted mobility or the density-of-states effective mass. We trace the underlying reason to the fact that the bands converge at a one k-point, which induces strong interband scattering of both the deformation-potential and the polar-optical kinds. The case contrasts with band convergence at distant k-points (as in the full Heusler), which better preserves the single-band scattering behavior thereby successfully leading to improved performance. Therefore, we suggest that band convergence as thermoelectric design principle is best suited to cases in which it occurs at distant k-points.


Nano Letters ◽  
2016 ◽  
Vol 16 (3) ◽  
pp. 2084-2089 ◽  
Author(s):  
Christoph Große ◽  
Olle Gunnarsson ◽  
Pablo Merino ◽  
Klaus Kuhnke ◽  
Klaus Kern

1993 ◽  
Vol 47 (7) ◽  
pp. 933-941 ◽  
Author(s):  
Karen L. Buchert ◽  
Jack L. Koenig ◽  
Shi-Qing Wang ◽  
John L. West

In samples of polymer-dispersed liquid crystals (PDLCs), submicron droplets of liquid crystal reside within a polymer matrix. By the use of the cross polarization technique for solid-state 13C NMR spectroscopy, the NMR spectrum of the liquid crystal can be obtained without interference from the polymer spectrum, even though the two materials have some similar chemical structures. Both 13C T1 and 13C T1 ρ relaxation experiments were performed on a PDLC system of 5CB in epoxy as a function of 5CB domain size. The 13C T1 relaxation constants and the localized motions they measure showed no significant change over the liquid crystal domain size studied. However, the 13C T1 ρ relaxation constants and the segmental motions of molecules they measure revealed a significant change over the liquid crystal domain size studied. Therefore, the 13C T1 ρ values can be used to determine the change in mobility of the molecular segments of the SCB molecules resulting from increased interaction between the liquid crystal and the polymer matrix and to further understand the importance of the molecular motions of the liquid crystal in the switching phenomenon for PDLC materials.


Sign in / Sign up

Export Citation Format

Share Document