scholarly journals Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria C. Tanzer ◽  
Isabell Bludau ◽  
Che A. Stafford ◽  
Veit Hornung ◽  
Matthias Mann

AbstractTumor necrosis factor (TNF) is one of the few cytokines successfully targeted by therapies against inflammatory diseases. However, blocking this well studied and pleiotropic ligand can cause dramatic side-effects. Here, we reason that a systems-level proteomic analysis of TNF signaling could dissect its diverse functions and offer a base for developing more targeted therapies. Therefore, we combine phosphoproteomics time course experiments with subcellular localization and kinase inhibitor analysis to identify functional modules of protein phosphorylation. The majority of regulated phosphorylation events can be assigned to an upstream kinase by inhibiting master kinases. Spatial proteomics reveals phosphorylation-dependent translocations of hundreds of proteins upon TNF stimulation. Phosphoproteome analysis of TNF-induced apoptosis and necroptosis uncovers a key role for transcriptional cyclin-dependent kinase activity to promote cytokine production and prevent excessive cell death downstream of the TNF signaling receptor. This resource of TNF-induced pathways and sites can be explored at http://tnfviewer.biochem.mpg.de/.

2020 ◽  
Author(s):  
Maria C Tanzer ◽  
Isabell Bludau ◽  
Che A Stafford ◽  
Veit Hornung ◽  
Matthias Mann

SummaryTumor necrosis factor (TNF) is one of the few cytokines successfully targeted by therapies against inflammatory diseases. However, blocking this well studied and pleiotropic ligand can cause dramatic side-effects. We reasoned that a systems-level proteomic analysis of TNF signaling could dissect its diverse functions and offer a base for developing more targeted therapies. Combining phosphoproteomics time course experiments with subcellular localization and kinase inhibitor analysis identifies functional modules of phosphorylations. The majority of regulated phosphorylations could be assigned to an upstream kinase by inhibiting master kinases and spatial proteomics revealed phosphorylation-dependent translocations of hundreds of proteins upon TNF stimulation. Phosphoproteome analysis of TNF-induced apoptosis and necroptosis uncovered a key role for transcriptional cyclin-dependent kinase (CDK) activity to promote cytokine production and prevent excessive cell death downstream of the TNF signaling receptor. Our comprehensive interrogation of TNF induced pathways and sites can be explored at http://tnfviewer.biochem.mpg.de/.Highlights-Distinct phosphorylation events mark early and late TNF signaling-Inhibition of master kinases reveals TNF stimulation dependent kinase-substrate relations-TNF induces phosphorylation-dependent spatial rearrangement of hundreds of proteins-CDK kinase activity promotes TNF-induced cytokine expression and inhibits cell death-CDK12/13 inhibitors have potential as anti-inflammatory agents


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2618-2618
Author(s):  
Ulrich Keller ◽  
Jennifer B. Old ◽  
Jonas Nilsson ◽  
Lisa Nilsson ◽  
Kirsteen Maclean ◽  
...  

Abstract Reduced levels of the cyclin dependent kinase inhibitor p27Kip1 connote poor prognosis in cancer. In human Burkitt lymphoma, and in pre-cancerous B cells and lymphomas arising in Eμ-Myc transgenic mice, p27Kip1 expression is markedly reduced. Furthermore, the Cks1 component of the SCFSkp2 complex that is necessary for p27Kip1 ubiquitylation and degradation, and to a lesser extent Skp2, are induced by Myc ex vivo and in Eμ-Myc B-cells and lymphomas, and up-regulation of CKS1 and SKP2 are hallmarks of Burkitt lymphoma. While loss of Skp2 has rather modest effects, the deletion of Cks1 in Eμ-Myc B-cells elevates p27Kip1 levels, reduces proliferation and delays lymphoma development. In contrast, Myc-induced apoptosis and transcriptional activity are not affected by Cks1 (or Skp2) loss. Therefore, Myc accelerates cell proliferation and promotes tumorigenesis through its ability to selectively induce Cks1.


2002 ◽  
Vol 277 (51) ◽  
pp. 50054-50061 ◽  
Author(s):  
Hideki Matsui ◽  
Yukiko Hikichi ◽  
Isamu Tsuji ◽  
Takao Yamada ◽  
Yasushi Shintani

LIGHT is a member of tumor necrosis factor (TNF) superfamily, and its receptors have been identified as lymphotoxin-β receptor (LTβR) and the herpesvirus entry mediator (HVEM)/ATAR/TR2, both of which lack the cytoplasmic sequence termed the “death domain.” The present study has demonstrated that LIGHT inhibits TNFα-mediated apoptosis of human primary hepatocytes sensitized by actinomycin D (ActD), but not Fas- or TRAIL-mediated apoptosis. Furthermore, LIGHT does not prevent some cell lines such as HepG2 or HeLa from undergoing ActD/TNFα-induced apoptosis. This protective effect requires LIGHT pretreatment at least 3 h prior to ActD sensitization. LIGHT stimulates nuclear factor-κB (NF-κB)-dependent transcriptional activity in human hepatocytes like TNFα. The time course of NF-κB activation after LIGHT administration is similar to that of the pretreatment required for the anti-apoptotic effect of LIGHT. LIGHT inhibits caspase-3 processing on the apoptotic protease cascade in TNFα-mediated apoptosis but not Fas-mediated apoptosis. In addition, increased caspase-3 and caspase-8 activities in ActD/TNFα-treated cells are effectively blocked by LIGHT pretreatment. However, LIGHT does not change the expression of TNFRp55, TNFRp75, and Fas. These results indicate that LIGHT may act as an anti-apoptotic agent against TNFα-mediated liver injury by blocking the activation of both caspase-3 and caspase-8.


2017 ◽  
Vol 214 (11) ◽  
pp. 3171-3182 ◽  
Author(s):  
Lance W. Peterson ◽  
Naomi H. Philip ◽  
Alexandra DeLaney ◽  
Meghan A. Wynosky-Dolfi ◽  
Kendra Asklof ◽  
...  

Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed “effector-triggered immunity.” The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase–induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.


1998 ◽  
Vol 9 (6) ◽  
pp. 1309-1321 ◽  
Author(s):  
Bodo Stern ◽  
Paul Nurse

The blocking of G1 progression by fission yeast pheromones requires inhibition of the cyclin-dependent kinase cdc2p associated with the B-cyclins cdc13p and cig2p. We show that cyclosome-mediated degradation of cdc13p and cig2p is necessary for down-regulation of B-cyclin–associated cdc2p kinase activity and for phermone-induced G1 arrest. The cyclin-dependent kinase inhibitor rum1p is also required to maintain this G1arrest; it binds both cdc13p and cig2p and is specifically required for cdc13p proteolysis. We propose that rum1p acts as an adaptor targeting cdc13p for degradation by the cyclosome. In contrast, the cig2p–cdc2p kinase can be down-regulated, and the cyclin cig2p can be proteolyzed independently of rum1p. We suggest that pheromone signaling inhibits the cig2p–cdc2p kinase, bringing about a transient G1arrest. As a consequence, rum1p levels increase, thus inhibiting and inducing proteolysis of the cdc13p–cdc2p kinase; this is necessary to maintain G1 arrest. We have also shown that pheromone-induced transcription occurs only in G1 and is independent of rum1p.


2013 ◽  
Vol 304 (6) ◽  
pp. L394-L400 ◽  
Author(s):  
Bernard M. Fischer ◽  
Jessica K. Wong ◽  
Simone Degan ◽  
Apparao B. Kummarapurugu ◽  
Shuo Zheng ◽  
...  

Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF and control subjects expressed markers of senescence, including p16INK4a(p16), a cyclin-dependent kinase inhibitor, phospho-Histone H2A.X (γH2A.X), and phospho-checkpoint 2 kinase (phospho-Chk2), which are also DNA damage response markers. Compared with airway epithelium from control subjects, CF airway epithelium had increased levels of expression of all three senescence markers. We hypothesized that the high load of NE in the CF airway triggers epithelial senescence by upregulating expression of p16, which inhibits cyclin-dependent kinase 4 (CDK4). Normal human bronchial epithelial (NHBE) cells, cultured in air-liquid interface were treated with NE (0, 200, and 500 nM) to induce visible injury. Total cell lysates were collected and evaluated by Western analysis for p16 protein expression and CDK4 kinase activity. NE significantly increased p16 expression and decreased CDK4 kinase activity in NHBE cells. These results support the concept that NE triggers expression of senescence markers in CF airway epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document