scholarly journals A microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shailabh Kumar ◽  
Felix J. H. Hol ◽  
Sujit Pujhari ◽  
Clayton Ellington ◽  
Haripriya Vaidehi Narayanan ◽  
...  

AbstractMosquito bites transmit a number of pathogens via salivary droplets deposited during blood-feeding, resulting in potentially fatal diseases. Little is known about the genomic content of these nanodroplets, including the transmission dynamics of live pathogens. Here we introduce Vectorchip, a low-cost, scalable microfluidic platform enabling high-throughput molecular interrogation of individual mosquito bites. We introduce an ultra-thin PDMS membrane which acts as a biting interface to arrays of micro-wells. Freely-behaving mosquitoes deposit saliva droplets by biting into these micro-wells. By modulating membrane thickness, we observe species-dependent differences in mosquito biting capacity, utilizable for selective sample collection. We demonstrate RT-PCR and focus-forming assays on-chip to detect mosquito DNA, Zika virus RNA, as well as quantify infectious Mayaro virus particles transmitted from single mosquito bites. The Vectorchip presents a promising approach for single-bite-resolution laboratory and field characterization of vector-pathogen communities, and could serve as a powerful early warning sentinel for mosquito-borne diseases.

2020 ◽  
Author(s):  
Shailabh Kumar ◽  
Felix J. H. Hol ◽  
Sujit Pujhari ◽  
Clayton Ellington ◽  
Haripriya Vaidehi Narayanan ◽  
...  

AbstractMosquito bites transmit a number of human pathogens resulting in potentially fatal diseases including malaria, dengue, chikungunya, West Nile encephalitis, and Zika. Although female mosquitoes transmit pathogens via salivary droplets deposited during blood feeding on a host, very little is known about the genomic content of these nanoliter scale droplets, including the transmission dynamics of live pathogens. Here we introduce Vectorchip, a low-cost, scalable microfluidic platform for molecular interrogation of individual mosquito bites in a high-throughput fashion. An ultra-thin PDMS membrane coupled to a microfluidic chip acts as a biting interface, through which freely-behaving mosquitoes deposit saliva droplets by biting into isolated arrayed micro-wells enabling molecular interrogation of individual bites. By modulating membrane thickness, the device enables on-chip comparison of biting capacity and provides a mechanical filter allowing selection of a specific mosquito species. Utilizing Vectorchip, we show on-chip simultaneous detection of mosquito DNA as well as viral RNA from Zika infected Aedes aegypti mosquitoes – demonstrating multiplexed high-throughput screening of vectors and pathogens. Focus-forming assays performed on-chip quantify number of infectious viral particles transmitted during mosquito bites, enabling assessment of active virus transmission. The platform presents a promising approach for single-bite-resolution laboratory and field characterization of vector pathogen communities, to reveal the intricate dynamics of pathogen transmission, and could serve as powerful early warning artificial “sentinel” for mosquito-borne diseases.


2020 ◽  
Author(s):  
Thiago Nunes Pereira ◽  
Fabiano Duarte Carvalho ◽  
Lidia Henrique da Silva ◽  
Silvana Faria de Mendonça ◽  
Luciano Andrade Moreira

ABSTRACTMosquitoes such as Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of many pathogens that greatly affect humankind. The maintenance of these mosquitoes in laboratory permit different studies that can help understanding their biology, as well as the vector-pathogen interaction. In addition to sugar meals, the blood feeding is essential for maintenance of the reproductive cycle in several vectors. The main blood sources for many mosquito colonies are direct feeding on live animal or the use of human/animal blood through artificial feeders. However, this latter process has some disadvantages, as artificial feeders can be very laborious for assembly and decontamination. Based on these observations, a simplified technique for feeding and artificial infection was developed with cotton-pads soaked (CS) and blood or blood and viral supernatant to simulate an artificial infection. The efficiency of the CS technique was investigated through the number of mosquitoes fed/infected, when compared to their respective control group. The CS technique, with blood at room temperature, promoted a feeding rate of 61.4% for Ae. albopictus, 70.8% for Cx. quinquefasciatus and 17% for Ae. aegypti. The control group (Hemotec-feeding) presented 47.9%, 16.5% and 59.1% of feeding success, respectively. To improve the CS technique for Ae. aegypti mosquitoes, the procedure was then performed with blood at 38°C, which was possible to observe a feeding rate of 47.3%, in comparison to 53.2% for the control group (Hemotec). When using the CS technique for artificial infection with Mayaro virus, more than 80% of infection was observed for Ae. aegypti and 100% for Ae. albopictus. In the traditional infection technique (glass feeder), the infection rate was 90% (Ae. aegypti) and 96.6% (Ae. albopictus). For Cx. quinquefasciatus, the infection was positive only with the CS technique, resulting in 1 (5%) mosquito infected with Mayaro virus. Our results suggest that this simplified technique of low-cost feeding and easy assembly, offers good results for feeding (maintenance of colonies) and artificial infection of different species of mosquitoes.


1974 ◽  
Vol 29 (1-2) ◽  
pp. 72-75 ◽  
Author(s):  
B. Dietzschold ◽  
O.R. Kaaden ◽  
S. Ueberschaer ◽  
F. Weiland ◽  
O. C. Straub

Abstract Typical C-type oncorna virus particles as shown by electron microscopy have been purified from the supernatant of cultured lymphocytes from bovine leukosis. In the purified C-particle fraction a DNA-polymerase activity was detected. Using several synthetic RNA-or DNA-homopolymers and 70S Friend virus RNA the template response of this bovine leukosis cell particle DNA polymerase was compared with those of feline leukaemia virus DNA polymerase and DNA polymerase from normal bovine lymphocytes. The DNA polymerase detected in the viral preparation of bovine leukosis is suggested to be an oncorna-virus-specific enzyme.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4141
Author(s):  
Tingting Wang ◽  
Wangbingfei Chen ◽  
Tingting Dong ◽  
Zihao Lv ◽  
Siming Zheng ◽  
...  

Towards the goal of developing scalable, economical and effective antimicrobial textiles to reduce infection transmission, here we prepared color-variable photodynamic materials comprised of photosensitizer (PS)-loaded wool/acrylic (W/A) blends. Wool fibers in the W/A blended fabrics were loaded with the photosensitizer rose bengal (RB), and the acrylic fibers were dyed with a variety of traditional cationic dyes (cationic yellow, cationic blue and cationic red) to broaden their color range. Investigations on the colorimetric and photodynamic properties of a series of these materials were implemented through CIELab evaluation, as well as photooxidation and antibacterial studies. Generally, the photodynamic efficacy of these dual-dyed fabrics was impacted by both the choice, and how much of the traditional cationic dye was employed in the dyeing of the W/A fabrics. When compared with the PS-only singly-dyed material, RB-W/A, that showed a 99.97% (3.5 log units; p = 0.02) reduction of Staphylococcus aureus under visible light illumination (λ ≥ 420 nm, 60 min), the addition of cationic dyes led to a slight decrease in the photoinactivation ability of the dual-dyed fabrics, but was still able to achieve a 99.3% inactivation of S. aureus. Overall, our findings demonstrate the feasibility and potential applications of low cost and color variable RB-loaded W/A blended fabrics as effective self-disinfecting textiles against pathogen transmission.


Author(s):  
Jing Liu ◽  
Yang Yang

Building systems as compactly as possible has been a major theme in modern science and engineering practices. However, such enthusiastic endeavor often encounters big troubles due to high cost and complexity of the process it involves. Part of the reasons comes from the methodology itself, the fabrication, designing and characterization procedure etc. Among various disciplines to making micro/nano object, those enabled from the thermal and hydrodynamic science plays a rather important role. In this article, we will illustrate a cryogenic way for realizing a group of different micro/nano devices which can be implemented as mechanical, hydraulic, electrical, or optical functional units. The basic principle of the method lies in the formation of ice crystals in small area, from which micro/nano aqueous objects or signals transmitting across them can be blocked, manipulated and analyzed. In this way, a series of micro/nano devices such as freeze tweezer, ice valve, freeze-thaw pump, electrical or optical signal switch and micro thermal analyzer etc. can be developed via a rather simple and low cost way. As examples, some latest advancement made in the authors’ lab will be reviewed. Their innovative applications in a wide variety of micro/nano engineering fields will be discussed. Further, to illustrate the low cost way to directly manufacture micro/nano objects, we will explain a bubble fabrication method whose basic principle lies in the chemical reaction occurring at the fluidic interfaces between two or more soap adjacent bubbles. A unique virtue of the bubble is that it can have a rather huge diameter however an extremely small membrane thickness, whose smallest size can even reach nano scale. Therefore, the administrated chemical reaction in the common interface of the contacting bubbles would lead to products with extremely small size. Particularly, all these results were achieved via a rather straightforward way. The bubble builds up a bridge between the macroscopic manipulation/observation and the fabrication in small world. Several typical micro structures as fabricated in the lab will be illustrated. As a flexible, easily controllable, and low cost method, the bubble fabrication can possibly be developed as a routine strategy for making micro/nano structures in the near future.


Lab on a Chip ◽  
2013 ◽  
Vol 13 (18) ◽  
pp. 3714 ◽  
Author(s):  
Bi-Yi Xu ◽  
Shan-Wen Hu ◽  
Guang-Sheng Qian ◽  
Jing-Juan Xu ◽  
Hong-Yuan Chen

2016 ◽  
Vol 208 ◽  
pp. 54-61 ◽  
Author(s):  
V. Vaghi ◽  
C. Potrich ◽  
L. Pasquardini ◽  
L. Lunelli ◽  
L. Vanzetti ◽  
...  

2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


Sign in / Sign up

Export Citation Format

Share Document