scholarly journals Active droploids

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jens Grauer ◽  
Falko Schmidt ◽  
Jesús Pineda ◽  
Benjamin Midtvedt ◽  
Hartmut Löwen ◽  
...  

AbstractActive matter comprises self-driven units, such as bacteria and synthetic microswimmers, that can spontaneously form complex patterns and assemble into functional microdevices. These processes are possible thanks to the out-of-equilibrium nature of active-matter systems, fueled by a one-way free-energy flow from the environment into the system. Here, we take the next step in the evolution of active matter by realizing a two-way coupling between active particles and their environment, where active particles act back on the environment giving rise to the formation of superstructures. In experiments and simulations we observe that, under light-illumination, colloidal particles and their near-critical environment create mutually-coupled co-evolving structures. These structures unify in the form of active superstructures featuring a droplet shape and a colloidal engine inducing self-propulsion. We call them active droploids—a portmanteau of droplet and colloids. Our results provide a pathway to create active superstructures through environmental feedback.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emad Pirhadi ◽  
Xiang Cheng ◽  
Xin Yong

AbstractAutonomous motion and motility are hallmarks of active matter. Active agents, such as biological cells and synthetic colloidal particles, consume internal energy or extract energy from the environment to generate self-propulsion and locomotion. These systems are persistently out of equilibrium due to continuous energy consumption. It is known that pressure is not always a state function for generic active matter. Torque interaction between active constituents and confinement renders the pressure of the system a boundary-dependent property. The mechanical pressure of anisotropic active particles depends on their microscopic interactions with a solid wall. Using self-propelled dumbbells confined by solid walls as a model system, we perform numerical simulations to explore how variations in the wall stiffness influence the mechanical pressure of dry active matter. In contrast to previous findings, we find that mechanical pressure can be independent of the interaction of anisotropic active particles with walls, even in the presence of intrinsic torque interaction. Particularly, the dependency of pressure on the wall stiffness vanishes when the stiffness is above a critical level. In such a limit, the dynamics of dumbbells near the walls are randomized due to the large torque experienced by the dumbbells, leading to the recovery of pressure as a state variable of density.


2021 ◽  
Vol 118 (40) ◽  
pp. e2104724118
Author(s):  
Zeng Tao Liu ◽  
Yan Shi ◽  
Yongfeng Zhao ◽  
Hugues Chaté ◽  
Xia-qing Shi ◽  
...  

Virtually all of the many active matter systems studied so far are made of units (biofilaments, cells, colloidal particles, robots, animals, etc.) that move even when they are alone or isolated. Their collective properties continue to fascinate, and we now understand better how they are unique to the bulk transduction of energy into work. Here we demonstrate that systems in which isolated but potentially active particles do not move can exhibit specific and remarkable collective properties. Combining experiments, theory, and numerical simulations, we show that such subcritical active matter can be realized with Quincke rollers, that is, dielectric colloidal particles immersed in a conducting fluid subjected to a vertical DC electric field. Working below the threshold field value marking the onset of motion for a single colloid, we find fast activity waves, reminiscent of excitable systems, and stable, arbitrarily large self-standing vortices made of thousands of particles moving at the same speed. Our theoretical model accounts for these phenomena and shows how they can arise in the absence of confining boundaries and individual chirality. We argue that our findings imply that a faithful description of the collective properties of Quincke rollers need to consider the fluid surrounding particles.


A partition function for a system of rigid rod-like particles with partial orientation about an axis is derived through the use of a modified lattice model. In the limit of perfect orientation the partition function reduces to the ideal mixing law ; for complete disorientation it corresponds to the polymer mixing law for rigid chains. A general expression is given for the free energy of mixing as a function of the mole numbers, the axis ratio of the solute particles, and a disorientation parameter. This function passes through a minimum followed by a maximum with increase in the disorientation parameter, provided the latter exceeds a critical value which is 2e for the pure solute and which increases with dilution. Assigning this parameter the value which minimizes the free energy, the chemical potentials display discontinuities a t the concentration a t which the minimum first appears. Separation into an isotropic phase and a some what more concentrated anisotropic phase arises because of the discontinuity, in confirmation of the theories of Onsager and Isihara, which treat only the second virial coefficient. Phase separation thus arises as a consequence of particle asymmetry, unassisted by an energy term . Whereas for a large-particle asymmetry both phases in equilibrium are predicted to be fairly dilute when mixing is athermal, a comparatively small positive energy of interaction causes the concentration in the anisotropic phase to increase sharply, while the concentration in the isotropic phase becomes vanishingly small. The theory offers a statistical mechanical basis for interpreting precipitation of rod-like colloidal particles with the formation of fibrillar structures such as are prominent in the fibrous proteins. The asymmetry of tobacco mosaic virus particles (with or without inclusion of their electric double layers) is insufficient alone to explain the well-known phase separation which occurs from their dilute solutions at very low ionic strengths. Higher-order interaction between electric double layers appears to be a major factor in bringing about dilute phase separation for these and other asymmetric colloidal particles bearing large charges, as was pointed out previously by Oster.


Author(s):  
Pulak Kumar Ghosh ◽  
Fabio Marchesoni ◽  
Yunyun Li ◽  
Franco Nori

Undesired advection effects are unavoidable in most nano-technological applications involving active matter. However, it is conceivable to govern the transport of active particles at the small scales by suitably tuning...


2020 ◽  
Author(s):  
Zakarya Benayad ◽  
Sören von Bülow ◽  
Lukas S. Stelzl ◽  
Gerhard Hummer

AbstractDisordered proteins and nucleic acids can condense into droplets that resemble the membraneless organelles observed in living cells. MD simulations offer a unique tool to characterize the molecular interactions governing the formation of these biomolecular condensates, their physico-chemical properties, and the factors controlling their composition and size. However, biopolymer condensation depends sensitively on the balance between different energetic and entropic contributions. Here, we develop a general strategy to fine-tune the potential energy function for molecular dynamics simulations of biopolymer phase separation. We rebalance protein-protein interactions against solvation and entropic contributions to match the excess free energy of transferring proteins between dilute solution and condensate. We illustrate this formalism by simulating liquid droplet formation of the FUS low complexity domain (LCD) with a rebalanced MARTINI model. By scaling the strength of the nonbonded interactions in the coarse-grained MARTINI potential energy function, we map out a phase diagram in the plane of protein concentration and interaction strength. Above a critical scaling factor of αc ≈ 0.6, FUS LCD condensation is observed, where α = 1 and 0 correspond to full and repulsive interactions in the MARTINI model, respectively. For a scaling factor α = 0.65, we recover the experimental densities of the dilute and dense phases, and thus the excess protein transfer free energy into the droplet and the saturation concentration where FUS LCD condenses. In the region of phase separation, we simulate FUS LCD droplets of four different sizes in stable equilibrium with the dilute phase and slabs of condensed FUS LCD for tens of microseconds, and over one millisecond in aggregate. We determine surface tensions in the range of 0.01 to 0.4mN/m from the fluctuations of the droplet shape and from the capillary-wave-like broadening of the interface between the two phases. From the dynamics of the protein end-to-end distance, we estimate shear viscosities from 0.001 to 0.02Pas for the FUS LCD droplets with scaling factors α in the range of 0.625 to 0.75, where we observe liquid droplets. Significant hydration of the interior of the droplets keeps the proteins mobile and the droplets fluid.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Remmi Danae Baker ◽  
Thomas Montenegro-Johnson ◽  
Anton D. Sediako ◽  
Murray J. Thomson ◽  
Ayusman Sen ◽  
...  

Abstract Through billions of years of evolution, microorganisms mastered unique swimming behaviors to thrive in complex fluid environments. Limitations in nanofabrication have thus far hindered the ability to design and program synthetic swimmers with the same abilities. Here we encode multi-behavioral responses in microscopic self-propelled tori using nanoscale 3D printing. We show experimentally and theoretically that the tori continuously transition between two primary swimming modes in response to a magnetic field. The tori also manipulated and transported other artificial swimmers, bimetallic nanorods, as well as passive colloidal particles. In the first behavioral mode, the tori accumulated and transported nanorods; in the second mode, nanorods aligned along the toriʼs self-generated streamlines. Our results indicate that such shape-programmed microswimmers have a potential to manipulate biological active matter, e.g. bacteria or cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun-Yong Lee ◽  
Jeong-Seon Yu ◽  
Jong-Hyun Kim

Abstract Colloidal particles dispersed in nematic liquid crystals are aligned along the orientation that minimizes the elastic free energy. Through applying an electric field to a nematic colloidal system, the orientation of the director can change. Consequently, colloidal particles realign to minimize the total free energy, which is the sum of the elastic and electric free energies. Herein, we demonstrate that if the preferred rotation directions given by the electric and elastic free energies are different during realignment, the rotation direction of the particle can be controlled by how we apply the electric field. When the strength of the electric field gradually increases, the particles rotate in the same direction as the rotation of the director. However, when a sufficiently high electric field is suddenly applied, the particles rotate in the opposite direction. In this study, we analyzed the effect of free energy on the bidirectional rotation behavior of the particles using a theoretical model. This study provides an effective approach to control the rotational behavior of colloidal particles over a wide-angle range between two orientational local minima.


2020 ◽  
Vol 117 (22) ◽  
pp. 11901-11907 ◽  
Author(s):  
Peng Liu ◽  
Hongwei Zhu ◽  
Ying Zeng ◽  
Guangle Du ◽  
Luhui Ning ◽  
...  

Due to its inherent out-of-equilibrium nature, active matter in confinement may exhibit collective behavior absent in unconfined systems. Extensive studies have indicated that hydrodynamic or steric interactions between active particles and boundary play an important role in the emergence of collective behavior. However, besides introducing external couplings at the single-particle level, the confinement also induces an inhomogeneous density distribution due to particle-position correlations, whose effect on collective behavior remains unclear. Here, we investigate this effect in a minimal chiral active matter composed of self-spinning rotors through simulation, experiment, and theory. We find that the density inhomogeneity leads to a position-dependent frictional stress that results from interrotor friction and couples the spin to the translation of the particles, which can then drive a striking spatially oscillating collective motion of the chiral active matter along the confinement boundary. Moreover, depending on the oscillation properties, the collective behavior has three different modes as the packing fraction varies. The structural origins of the transitions between the different modes are well identified by the percolation of solid-like regions or the occurrence of defect-induced particle rearrangement. Our results thus show that the confinement-induced inhomogeneity, dynamic structure, and compressibility have significant influences on collective behavior of active matter and should be properly taken into account.


Soft Matter ◽  
2020 ◽  
Vol 16 (15) ◽  
pp. 3779-3791 ◽  
Author(s):  
Ryan C. Maloney ◽  
Guo-Jun Liao ◽  
Sabine H. L. Klapp ◽  
Carol K. Hall

Mixtures of dipolar and active colloidal particles display a variety of states including chains, string-fluids, and motility induced phase separation.


Sign in / Sign up

Export Citation Format

Share Document