scholarly journals Mechanism of actin-dependent activation of nucleotidyl cyclase toxins from bacterial human pathogens

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander Belyy ◽  
Felipe Merino ◽  
Undine Mechold ◽  
Stefan Raunser

AbstractBacterial human pathogens secrete initially inactive nucleotidyl cyclases that become potent enzymes by binding to actin inside eukaryotic host cells. The underlying molecular mechanism of this activation is, however, unclear. Here, we report structures of ExoY from Pseudomonas aeruginosa and Vibrio vulnificus bound to their corresponding activators F-actin and profilin-G-actin. The structures reveal that in contrast to the apo-state, two flexible regions become ordered and interact strongly with actin. The specific stabilization of these regions results in an allosteric stabilization of the nucleotide binding pocket and thereby to an activation of the enzyme. Differences in the sequence and conformation of the actin-binding regions are responsible for the selective binding to either F- or G-actin. Other nucleotidyl cyclase toxins that bind to calmodulin rather than actin undergo a similar disordered-to-ordered transition during activation, suggesting that the allosteric activation-by-stabilization mechanism of ExoY is conserved in these enzymes, albeit the different activator.

2021 ◽  
Author(s):  
Alexander Belyy ◽  
Felipe Merino ◽  
Undine Mechold ◽  
Stefan Raunser

Several bacterial human pathogens secrete nucleotidyl cyclase toxins, that are activated by interaction with actin of the eukaryotic host cells. However, the underlying molecular mechanism of this process which protects bacteria from self-intoxication is unclear. Here, we report structures of ExoY from Pseudomonas aeruginosa and Vibrio vulnificus in complex with their corresponding activators F-actin and profilin-G-actin. The structures reveal that in contrast to the apo state, two flexible regions become ordered and interact strongly with actin. The specific stabilization of these regions results in an allosteric stabilization of the distant nucleotide binding pocket and thereby to an activation of the enzyme. Differences in the sequence and conformation of the actin-binding regions are responsible for the selective binding to either F- or G-actin. This specificity can be biotechnologically modulated by exchanging these regions from one toxin to the other. Other bacterial nucleotidyl cyclases, such as the anthrax edema factor and CyaA from Bortedella pertussis, that bind to calmodulin undergo a similar disordered-to-ordered transition during activation, suggesting that the allosteric activation-by-stabilization mechanism of ExoY is paradigmatic for all bacterial nucleotidyl cyclase toxins.


2020 ◽  
Vol 295 (11) ◽  
pp. 3506-3517 ◽  
Author(s):  
Jordan M. Mancl ◽  
Cristian Suarez ◽  
Wenguang G. Liang ◽  
David R. Kovar ◽  
Wei-Jen Tang

Pseudomonas aeruginosa uses a type III secretion system (T3SS) to inject cytotoxic effector proteins into host cells. The promiscuous nucleotidyl cyclase, exoenzyme Y (ExoY), is one of the most common effectors found in clinical P. aeruginosa isolates. Recent studies have revealed that the nucleotidyl cyclase activity of ExoY is stimulated by actin filaments (F-actin) and that ExoY alters actin cytoskeleton dynamics in vitro, via an unknown mechanism. The actin cytoskeleton plays an important role in numerous key biological processes and is targeted by many pathogens to gain competitive advantages. We utilized total internal reflection fluorescence microscopy, bulk actin assays, and EM to investigate how ExoY impacts actin dynamics. We found that ExoY can directly bundle actin filaments with high affinity, comparable with eukaryotic F-actin–bundling proteins, such as fimbrin. Of note, ExoY enzymatic activity was not required for F-actin bundling. Bundling is known to require multiple actin-binding sites, yet small-angle X-ray scattering experiments revealed that ExoY is a monomer in solution, and previous data suggested that ExoY possesses only one actin-binding site. We therefore hypothesized that ExoY oligomerizes in response to F-actin binding and have used the ExoY structure to construct a dimer-based structural model for the ExoY–F-actin complex. Subsequent mutational analyses suggested that the ExoY oligomerization interface plays a crucial role in mediating F-actin bundling. Our results indicate that ExoY represents a new class of actin-binding proteins that modulate the actin cytoskeleton both directly, via F-actin bundling, and indirectly, via actin-activated nucleotidyl cyclase activity.


2004 ◽  
Vol 186 (8) ◽  
pp. 2281-2287 ◽  
Author(s):  
Simon C. Williams ◽  
Erin K. Patterson ◽  
Nancy L. Carty ◽  
John A. Griswold ◽  
Abdul N. Hamood ◽  
...  

ABSTRACT Quorum sensing (QS) is a cell density-dependent signaling mechanism used by many bacteria to control gene expression. Several recent reports indicate that the signaling molecules (autoinducers) that mediate QS in Pseudomonas aeruginosa may also modulate gene expression in host cells; however, the mechanisms are largely unknown. Here we show that two P. aeruginosa autoinducers, N-3-oxododecanoyl-homoserine lactone and N-butyryl-homoserine lactone, can both enter eukaryotic cells and activate artificial chimeric transcription factors based on their cognate transcriptional activators, LasR and RhlR, respectively. The autoinducers promoted nuclear localization of chimeric proteins containing the full LasR or RhlR coding region, and the LasR-based proteins were capable of activating transcription of a LasR-dependent luciferase gene. Responsiveness to autoinducer required the N-terminal autoinducer-binding domains of LasR and RhlR. Truncated proteins consisting of only the C-terminal helix-turn-helix DNA-binding domains of both proteins attached to a nuclear localization signal efficiently translocated to the nucleus in the absence of autoinducer, and truncated LasR-based proteins functioned as constitutively active transcription factors. Chimeric LasR proteins were only activated by their cognate autoinducer ligand and not by N-butyryl-l-homoserine lactone. These data provide evidence that autoinducer molecules from human pathogens can enter mammalian cells and suggest that autoinducers may influence gene expression in host cells by interacting with and activating as-yet-unidentified endogenous proteins.


2010 ◽  
Vol 79 (1) ◽  
pp. 166-179 ◽  
Author(s):  
Joao B. Xavier ◽  
Wook Kim ◽  
Kevin R. Foster

Biosensors ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 124
Author(s):  
Liliam K. Harada ◽  
Waldemar Bonventi Júnior ◽  
Erica C. Silva ◽  
Thais J. Oliveira ◽  
Fernanda C. Moreli ◽  
...  

During the last decennium, it has become widely accepted that ubiquitous bacterial viruses, or bacteriophages, exert enormous influences on our planet’s biosphere, killing between 4–50% of the daily produced bacteria and constituting the largest genetic diversity pool on our planet. Currently, bacterial infections linked to healthcare services are widespread, which, when associated with the increasing surge of antibiotic-resistant microorganisms, play a major role in patient morbidity and mortality. In this scenario, Pseudomonas aeruginosa alone is responsible for ca. 13–15% of all hospital-acquired infections. The pathogen P. aeruginosa is an opportunistic one, being endowed with metabolic versatility and high (both intrinsic and acquired) resistance to antibiotics. Bacteriophages (or phages) have been recognized as a tool with high potential for the detection of bacterial infections since these metabolically inert entities specifically attach to, and lyse, bacterial host cells, thus, allowing confirmation of the presence of viable cells. In the research effort described herein, three different phages with broad lytic spectrum capable of infecting P. aeruginosa were isolated from environmental sources. The isolated phages were elected on the basis of their ability to form clear and distinctive plaques, which is a hallmark characteristic of virulent phages. Next, their structural and functional stabilization was achieved via entrapment within the matrix of porous alginate, biopolymeric, and bio-reactive, chromogenic hydrogels aiming at their use as sensitive matrices producing both color changes and/or light emissions evolving from a reaction with (released) cytoplasmic moieties, as a bio-detection kit for P. aeruginosa cells. Full physicochemical and biological characterization of the isolated bacteriophages was the subject of a previous research paper.


2021 ◽  
Vol 77 (10) ◽  
pp. 1305-1316
Author(s):  
Yujing Chen ◽  
Haizhu Jia ◽  
Jianyu Zhang ◽  
Yakun Liang ◽  
Ruihua Liu ◽  
...  

Polyamines are important regulators in all living organisms and are implicated in essential biological processes including cell growth, differentiation and apoptosis. Pseudomonas aeruginosa possesses an spuABCDEFGHI gene cluster that is involved in the metabolism and uptake of two polyamines: spermidine and putrescine. In the proposed γ-glutamylation–putrescine metabolism pathway, SpuA hydrolyzes γ-glutamyl-γ-aminobutyrate (γ-Glu-GABA) to glutamate and γ-aminobutyric acid (GABA). In this study, crystal structures of P. aeruginosa SpuA are reported, confirming it to be a member of the class I glutamine amidotransferase (GAT) family. Activity and substrate-binding assays confirm that SpuA exhibits a preference for γ-Glu-GABA as a substrate. Structures of an inactive H221N mutant were determined with bound glutamate thioester intermediate or glutamate product, thus delineating the active site and substrate-binding pocket and elucidating the catalytic mechanism. The crystal structure of another bacterial member of the class I GAT family from Mycolicibacterium smegmatis (MsGATase) in complex with glutamine was determined for comparison and reveals a binding site for glutamine. Activity assays confirm that MsGATase has activity for glutamine as a substrate but not for γ-Glu-GABA. The work reported here provides a starting point for further investigation of polyamine metabolism in P. aeruginosa.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 630 ◽  
Author(s):  
Jichen Niu ◽  
Ya Jiang ◽  
Hao Xu ◽  
Changjing Zhao ◽  
Guodong Zhou ◽  
...  

Japanese encephalitis virus (JEV) is a mosquito-borne Flavivirus, the leading cause of viral-induced encephalitis. Several host molecules have been identified as the JEV attachment factor; however, the molecules involved in JEV entry remain poorly understood. In the present study, we demonstrate that TIM-1 is important for efficient infection by JEV. Firstly, three TIM-1 variants (V1, V2, and V3) were cloned from A549 cells, and we revealed that only ectopically TIM-1 V2 expression in 293T cells significantly promotes JEV attachment, entry and infection. Point mutation of phosphatidylserine (Ptdser) binding pocket in the TIM-1 IgV domain dampened JEV entry, indicating that TIM-1-mediated JEV infection is Ptdser-dependent. Furthermore, we found the cytoplasmic domain of TIM-1 is also required for enhancing JEV entry. Additionally, knock down of TIM-1 expression in A549 cells impaired JEV entry and infection, but not attachment, suggesting that additional factors exist in A549 cells that allow the virus to bind. In conclusion, our findings demonstrate that TIM-1 promotes JEV infection as an entry cofactor, and the polymorphism of TIM-1 is associated with JEV susceptibility to host cells.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3073 ◽  
Author(s):  
Lucie Dupin ◽  
Mathieu Noël ◽  
Silvère Bonnet ◽  
Albert Meyer ◽  
Thomas Géhin ◽  
...  

The Gram negative bacterium Pseudomonas aeruginosa (PA) is an opportunistic bacterium that causes severe and chronic infection of immune-depressed patients. It has the ability to form a biofilm that gives a selective advantage to the bacteria with respect to antibiotherapy and host defenses. Herein, we have focused on the tetrameric soluble lectin which is involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. It binds to l-fucose, d-mannose and glycan exposing terminal fucose or mannose. Using a competitive assay on microarray, 156 oligosaccharides and polysaccharides issued from fermentation or from the biomass were screened toward their affinity to LecB. Next, the five best ligands (Lewisa, Lewisb, Lewisx, siayl-Lewisx and 3-fucosyllactose) were derivatized with a propargyl aglycon allowing the synthesis of 25 trivalent, 25 tetravalent and 5 monovalent constructions thanks to copper catalyzed azide alkyne cycloaddition. The 55 clusters were immobilized by DNA Directed immobilization leading to the fabrication of a glycocluster microarray. Their binding to LecB was studied. Multivalency improved the binding to LecB. The binding structure relationship of the clusters is mainly influenced by the carbohydrate residues. Molecular simulations indicated that the simultaneous contact of both binding sites of monomer A and D seems to be energetically possible.


2020 ◽  
Author(s):  
Hye In Ahn ◽  
Ji-Won Park ◽  
Hyun-Jae Jang ◽  
Ok-kyoung Kwon ◽  
Jung Hee Kim ◽  
...  

Abstract Background: The type three secretion system (T3SS) is a major virulence system of Pseudomonas aeruginosa (P. aeruginosa). The effector protein Exotoxin S (ExoS) produced by P. aeruginosa is secreted into the host cells via the T3SS. For the purpose of screening the inhibitors with regard to ExoS secretion, we developed the sandwich-type enzyme-linked immunosorbent assay (ELISA) system. From the initial screening, quercetin was selected because it has the prominent effect of ExoS inhibition and also is known to have anti-inflammatory and antioxidant effects on mammalian cells.Results: In this study, we investigated the effects of quercetin on the expression and secretion of ExoS using the ELISA and Western blot analysis methods. The results showed that the secretion of ExoS was significantly decreased by 10, 20uM quercetin. Also, pscF and popD, which are composed of the T3SS needle, are reduced by quercetin at the mRNA level, and we confirmed the inhibitory effect of quercetin on cytokines in P. aeruginosa-infected H292 cells by real-time polymerase chain reaction (PCR). Conclusion: Collectively, quercetin inhibits the secretion of ExoS by reducing both ExoS production and the expression of the needle protein of T3SS. Furthermore, these results suggest that quercetin has the potential to be used as an anti-toxic treatment for the disease caused by P. aeruginosa infection.


Sign in / Sign up

Export Citation Format

Share Document