scholarly journals Cis-regulatory architecture of human ESC-derived hypothalamic neuron differentiation aids in variant-to-gene mapping of relevant complex traits

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew C. Pahl ◽  
Claudia A. Doege ◽  
Kenyaita M. Hodge ◽  
Sheridan H. Littleton ◽  
Michelle E. Leonard ◽  
...  

AbstractThe hypothalamus regulates metabolic homeostasis by influencing behavior and endocrine systems. Given its role governing key traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function could yield insights into disease pathogenesis. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generate a high-resolution chromatin architecture atlas of an established embryonic stem cell derived hypothalamic-like neuron model across three stages of in vitro differentiation. We profile accessible chromatin and identify physical contacts between gene promoters and putative cis-regulatory elements to characterize global regulatory landscape changes during hypothalamic differentiation. Next, we integrate these data with GWAS loci for various complex traits, identifying multiple candidate effector genes. Our results reveal common target genes for these traits, potentially affecting core developmental pathways. Our atlas will enable future efforts to determine hypothalamic mechanisms influencing disease susceptibility.

2020 ◽  
Author(s):  
Matthew C. Pahl ◽  
Claudia A. Doege ◽  
Kenyaita M. Hodge ◽  
Sheridan H. Littleton ◽  
Michelle E. Leonard ◽  
...  

SummaryThe hypothalamus regulates metabolic homeostasis by influencing behavior, energy utilization and endocrine systems. Given its role governing health-relevant traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function should yield insights into these traits and diseases. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generated a chromatin architecture atlas of an established embryonic stem cell (ESC)-derived hypothalamic-like neuron (HN) model across three stages of in vitro differentiation. We profiled accessible chromatin and identified physically interacting contacts between gene promoters and their putative cis-regulatory elements (cREs) to characterize changes in the gene regulatory landscape during hypothalamic differentiation. Next, we integrated these data with GWAS loci for multiple traits and diseases enriched for heritability in these cells, identifying candidate effector genes and cREs impacting transcription factor binding. Our results reveal common target genes for these traits, potentially identifying core hypothalamic developmental pathways. Our atlas will enable future efforts to determine precise mechanisms underlying hypothalamic development with respect to specific disease pathogenesis.


2021 ◽  
Author(s):  
Anna Yoney ◽  
Lu Bai ◽  
Ali H. Brivanlou ◽  
Eric D Siggia

Embryogenesis is guided by a limited set of signaling pathways that are reused at different times and places throughout development. How a context dependent signaling response is generated has been a central question of developmental biology, which can now be addressed with in vitro model systems. Our previous work in human embryonic stem cells (hESCs) established that pre-exposure of cells to WNT/β-catenin signaling is sufficient to switch the output of ACTIVIN/SMAD2 signaling from pluripotency maintenance to mesendoderm (ME) differentiation. A body of previous literature has established the role of both pathways in ME differentiation. However, our work demonstrated that the two signals do not need to be present simultaneously and that hESCs have a means to record WNT signals. Here we demonstrate that hESCs have accessible chromatin at SMAD2 binding sites near pluripotency and ME-associated target genes and that WNT priming does not alter SMAD2 binding. Rather our results indicate that stable transcriptional output at ME genes results from WNT-dependent production of an additional SMAD2 co-factor, EOMES. We show that expression of EOMES can replace WNT signaling in ME differentiation, providing a mechanistic basis for WNT-priming and memory in early development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giuliano Crispatzu ◽  
Rizwan Rehimi ◽  
Tomas Pachano ◽  
Tore Bleckwehl ◽  
Sara Cruz-Molina ◽  
...  

AbstractPoised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Paula Freire-Pritchett ◽  
Stefan Schoenfelder ◽  
Csilla Várnai ◽  
Steven W Wingett ◽  
Jonathan Cairns ◽  
...  

Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells.


2020 ◽  
pp. 1-14
Author(s):  
Shelby Shrigley ◽  
Fredrik Nilsson ◽  
Bengt Mattsson ◽  
Alessandro Fiorenzano ◽  
Janitha Mudannayake ◽  
...  

Background: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson’s disease (PD) and they provide the option of using the patient’s own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. Objective: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. Methods: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. Results: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. Conclusion: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Narendra Pratap Singh ◽  
Bony De Kumar ◽  
Ariel Paulson ◽  
Mark E. Parrish ◽  
Carrie Scott ◽  
...  

Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.


Author(s):  
Harri Makkonen ◽  
Jorma J. Palvimo

AbstractAndrogen receptor (AR) acts as a hormone-controlled transcription factor that conveys the messages of both natural and synthetic androgens to the level of genes and gene programs. Defective AR signaling leads to a wide array of androgen insensitivity disorders, and deregulated AR function, in particular overexpression of AR, is involved in the growth and progression of prostate cancer. Classic models of AR action view AR-binding sites as upstream regulatory elements in gene promoters or their proximity. However, recent wider genomic screens indicate that AR target genes are commonly activated through very distal chromatin-binding sites. This highlights the importance of long-range chromatin regulation of transcription by the AR, shifting the focus from the linear gene models to three-dimensional models of AR target genes and gene programs. The capability of AR to regulate promoters from long distances in the chromatin is particularly important when evaluating the role of AR in the regulation of genes in malignant prostate cells that frequently show striking genomic aberrations, especially gene fusions. Therefore, in addition to the mechanisms of DNA loop formation between the enhancer bound ARs and the transcription apparatus at the target core promoter, the mechanisms insulating distally bound ARs from promiscuously making contacts and activating other than their normal target gene promoters are critical for proper physiological regulation and thus currently under intense investigation. This review discusses the current knowledge about the AR action in the context of gene aberrations and the three-dimensional chromatin landscape of prostate cancer cells.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2870-2882 ◽  
Author(s):  
Unmesh Jadhav ◽  
J. Larry Jameson

Steroidogenic factor 1 (SF-1) is essential for the development and function of steroidogenic tissues. Stable incorporation of SF-1 into embryonic stem cells (SF-1-ES cells) has been shown to prime the cells for steroidogenesis. When provided with exogenous cholesterol substrate, and after treatment with retinoic acid and cAMP, SF-1-ES cells produce progesterone but do not produce other steroids such as cortisol, estradiol, or testosterone. In this study, we explored culture conditions that optimize SF-1-mediated differentiation of ES cells into defined steroidogenic lineages. When embryoid body formation was used to facilitate cell lineage differentiation, SF-1-ES cells were found to be restricted in their differentiation, with fewer cells entering neuronal pathways and a larger fraction entering the steroidogenic lineage. Among the differentiation protocols tested, leukemia inhibitory factor (LIF) removal, followed by prolonged cAMP treatment was most efficacious for inducing steroidogenesis in SF-1-ES cells. In this protocol, a subset of SF-1-ES cells survives after LIF withdrawal, undergoes morphologic differentiation, and recovers proliferative capacity. These cells are characterized by induction of steroidogenic enzyme genes, use of de novo cholesterol, and production of multiple steroids including estradiol and testosterone. Microarray studies identified additional pathways associated with SF-1 mediated differentiation. Using biotinylated SF-1 in chromatin immunoprecipitation assays, SF-1 was shown to bind directly to multiple target genes, with induction of binding to some targets after steroidogenic treatment. These studies indicate that SF-1 expression, followed by LIF removal and treatment with cAMP drives ES cells into a steroidogenic pathway characteristic of gonadal steroid-producing cells.


2021 ◽  
Author(s):  
Weizheng Liang ◽  
Guipeng Li ◽  
Huanhuan Cui ◽  
Yukai Wang ◽  
Wencheng Wei ◽  
...  

Abstract Background: Differences in gene expression, which arises from divergence in cis-regulatory elements or alterations in transcription factors (TFs) binding specificity, are one of the most important causes of phenotypic diversity during evolution. On one hand, changes in the cis-elements located in the vicinity of target genes affect TF binding and/or local chromatin environment, thereby modulating gene expression in one-to-one manner. On the other hand, alterations in trans-factors influence the expression of their target genes in a more pleiotropic fashion. Although evolution of amino acid sequences is much slower than that of non-coding regulatory elements, particularly for the TF DNA binding domains (DBD), it is still possible that changes in TF-DBD might have the potential to drive large phenotypic changes if the resulting effects have a net positive effect on the organism’s fitness. If so, species-specific changes in TF-DBD might be positively selected. So far, however, this possibility has been largely unexplored.Results: By protein sequence analysis, we observed high sequence conservation in the DNA binding domain (DBD) of the transcription factor Cdx2 across many vertebrates, whereas three amino acid changes were exclusively found in mouse Cdx2 (mCdx2), suggesting potential positive selection in the mouse lineage. Multi-omics analyses were then carried out to investigate the effects of these changes. Surprisingly, there were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Finally, we used rat-mouse allodiploid embryonic stem cells (RMES) to study the cis effects of Cdx2-mediated gene regulation between the two rodents. Interestingly, whereas Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.Conclusions: There were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Moreover, Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.


2021 ◽  
Author(s):  
Giuliano Crispatzu ◽  
Rizwan Rehimi ◽  
Tomas Pachano ◽  
Tore Bleckwehl ◽  
Sara de la Cruz Molina ◽  
...  

AbstractPoised enhancers (PEs) represent a limited and genetically distinct set of distal regulatory elements that control the induction of developmental genes in a hierarchical and non-redundant manner. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally identified and subsequently characterized using embryonic stem cells (ESC) as an in vitro differentiation system, it is currently unknown whether PEs are functionally conserved in vivo. Here, we generate and mine various types of genomic data to show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that, in mouse pluripotent cells, the interactions between PEs and their bivalent target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. proximity to CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation, preferentially within specific vertebrate clades, with only a small subset being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting evolutionary conserved PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential and non-redundant roles during the induction of major developmental genes in vivo.


Sign in / Sign up

Export Citation Format

Share Document