scholarly journals Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity,

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongwen Lv ◽  
Pratik Pal ◽  
Xingui Liu ◽  
Yannan Jia ◽  
Dinesh Thummuri ◽  
...  

AbstractPROteolysis-TArgeting Chimeras (PROTACs) have emerged as an innovative drug development platform. However, most PROTACs have been generated empirically because many determinants of PROTAC specificity and activity remain elusive. Through computational modelling of the entire NEDD8-VHL Cullin RING E3 ubiquitin ligase (CRLVHL)/PROTAC/BCL-xL/UbcH5B(E2)-Ub/RBX1 complex, we find that this complex can only ubiquitinate the lysines in a defined band region on BCL-xL. Using this approach to guide our development of a series of ABT263-derived and VHL-recruiting PROTACs, we generate a potent BCL-xL and BCL-2 (BCL-xL/2) dual degrader with significantly improved antitumor activity against BCL-xL/2-dependent leukemia cells. Our results provide experimental evidence that the accessibility of lysines on a target protein plays an important role in determining the selectivity and potency of a PROTAC in inducing protein degradation, which may serve as a conceptual framework to guide the future development of PROTACs.

Author(s):  
Gaël K. Scholtès ◽  
Aubrey M. Sawyer ◽  
Cristina C. Vaca ◽  
Isabelle Clerc ◽  
Meejeon Roh ◽  
...  

Open Biology ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 200041 ◽  
Author(s):  
Zhuoyao Chen ◽  
Gregory A. Wasney ◽  
Sarah Picaud ◽  
Panagis Filippakopoulos ◽  
Masoud Vedadi ◽  
...  

Wnt signalling is dependent on dishevelled proteins (DVL1-3), which assemble an intracellular Wnt signalosome at the plasma membrane. The levels of DVL1-3 are regulated by multiple Cullin-RING E3 ligases that mediate their ubiquitination and degradation. The BTB-Kelch protein KLHL12 was the first E3 ubiquitin ligase to be identified for DVL1-3, but the molecular mechanisms determining its substrate interactions have remained unknown. Here, we mapped the interaction of DVL1-3 to a ‘PGXPP' motif that is conserved in other known partners and substrates of KLHL12, including PLEKHA4, PEF1, SEC31 and DRD4. To determine the binding mechanism, we solved a 2.4 Å crystal structure of the Kelch domain of KLHL12 in complex with a DVL1 peptide that bound with low micromolar affinity. The DVL1 substrate adopted a U-shaped turn conformation that enabled hydrophobic interactions with all six blades of the Kelch domain β-propeller. In cells, the mutation or deletion of this motif reduced the binding and ubiquitination of DVL1 and increased its stability confirming this sequence as a degron motif for KLHL12 recruitment. These results define the molecular mechanisms determining DVL regulation by KLHL12 and establish the KLHL12 Kelch domain as a new protein interaction module for a novel proline-rich motif.


2011 ◽  
Vol 23 (10) ◽  
pp. 3627-3640 ◽  
Author(s):  
Diana Roberts ◽  
Ullas V. Pedmale ◽  
Johanna Morrow ◽  
Shrikesh Sachdev ◽  
Esther Lechner ◽  
...  

Biochemistry ◽  
2011 ◽  
Vol 50 (8) ◽  
pp. 1359-1367 ◽  
Author(s):  
Jinwoo Ahn ◽  
Zach Novince ◽  
Jason Concel ◽  
Chang-Hyeock Byeon ◽  
Alexander M. Makhov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document