scholarly journals Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
K. H. Brian Lam ◽  
Alberto J. Leon ◽  
Weili Hui ◽  
Sandy Che-Eun Lee ◽  
Ihor Batruch ◽  
...  

AbstractGlioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma’s hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance.

2014 ◽  
Vol 60 (3) ◽  
pp. 308-321 ◽  
Author(s):  
S.N. Naryzhny ◽  
N.L. Ronzhina ◽  
M.A. Mainskova ◽  
N.V. Belyakova ◽  
R.A. Pantina ◽  
...  

High grade glioma (glioblastoma) is the most common brain tumor. Its malignancy makes it the fourth biggest cause of cancer death. In our experiments we used several glioblastoma cell lines generated in our laboratory to obtain proteomics information specific for this disease. This study starts our developing the complete 2DE map of glioblastoma proteins. 2DE separation with following imaging, immunochemistry, spot picking, and mass-spectrometry allowed us detecting and identifying more than 100 proteins. Several of them have prominent differences in their level between norm and cancer. Among them are alpha-enolase (ENOA_HUMAN), pyruvate kinase isozymes M1/M2 (KPYM_HUMAN), cofilin 1 (COF1_HUMAN), translationally-controlled tumor protein TCTP_HUMAN, annexin 1 (ANXA1_HUMAN), PCNA (PCNA_HUMAN), p53 (TP53_HUMAN) and others. Most interesting results were obtained with protein p53. In all glioblastoma cell lines, its level was dramatically up regulated and enriched by multiple additional isoforms. This distribution is well correlated with presence of these proteins inside of cells themselves. At this initial step we suggest the panel of specific brain tumor markers (signature) to help creating noninvasive techniques to diagnose disease. These preliminary data point to these proteins as promising markers of glioblastoma.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Justyna Moskwa ◽  
Sylwia K. Naliwajko ◽  
Renata Markiewicz-Żukowska ◽  
Krystyna J. Gromkowska-Kępka ◽  
Patryk Nowakowski ◽  
...  

AbstractPropolis and Bacopa monnieri (L.) Wettst. (Brahmi) are natural products that contain many active substances and possess anticancer properties. The aim of this study was to investigate the chemical composition of Polish propolis extract (PPE) by gas chromatography-mass spectrometry (GC–MS), B. monnieri extracts (BcH, BcS) by high performance liquid chromatography with diode array detector and mass spectrometry coupled with electrospray ionization (LC–ESI–MS) and finally determine its anti-proliferative potential combined with BcH and BcS in glioblastoma cell lines (T98G, LN-18, U87MG). The antiproliferative activity of PPE, BcH, BcS and their combination (PPE + BcH) was determined by a cytotoxicity test, and DNA binding was determined by [3H]-thymidine incorporation. Flavonoids and phenylpropenoids were the main components of PPE. BcH and BcS samples were also successfully analyzed. Their main constituents were saponins such as bacoside A3, bacopaside II, X and bacopasaponin C and its isomer. The inhibitory effects on the viability and proliferation of the tested glioma cells observed after incubation with the combination of PPE and BcH were significantly stronger than the effects of these two extracts separately. These findings suggest that propolis in combination with B. monnieri shows promising anticancer activity for the treatment of glioblastoma. However, further studies are still required.


Tsitologiya ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
L. N. Kiseleva ◽  
◽  
A. V. Kartashev ◽  
N. L. Vartanyan ◽  
A. A. Pinevich ◽  
...  

2019 ◽  
Vol 19 (17) ◽  
pp. 1521-1534 ◽  
Author(s):  
Anatoly Sorokin ◽  
Vsevolod Shurkhay ◽  
Stanislav Pekov ◽  
Evgeny Zhvansky ◽  
Daniil Ivanov ◽  
...  

Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.


Author(s):  
Raghothama Chaerkady ◽  
Yebin Zhou ◽  
Jared A. Delmar ◽  
Shao Huan Samuel Weng ◽  
Junmin Wang ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 897.2-897
Author(s):  
M. Maurits ◽  
T. Huizinga ◽  
M. Reinders ◽  
S. Raychaudhuri ◽  
E. Karlson ◽  
...  

Background:Heterogeneity in disease populations complicates discovery of risk factors. To identify risk factors for subpopulations of diseases, we need analytical methods that can deal with unidentified disease subgroups.Objectives:Inspired by successful approaches from the Big Data field, we developed a high-throughput approach to identify subpopulations within patients with heterogeneous, complex diseases using the wealth of information available in Electronic Medical Records (EMRs).Methods:We extracted longitudinal healthcare-interaction records coded by 1,853 PheCodes[1] of the 64,819 patients from the Boston’s Partners-Biobank. Through dimensionality reduction using t-SNE[2] we created a 2D embedding of 32,424 of these patients (set A). We then identified distinct clusters post-t-SNE using DBscan[3] and visualized the relative importance of individual PheCodes within them using specialized spectrographs. We replicated this procedure in the remaining 32,395 records (set B).Results:Summary statistics of both sets were comparable (Table 1).Table 1.Summary statistics of the total Partners Biobank dataset and the 2 partitions.Set-Aset-BTotalEntries12,200,31112,177,13124,377,442Patients32,42432,39564,819Patientyears369,546.33368,597.92738,144.2unique ICD codes25,05624,95326,305unique Phecodes1,8511,8531,853We found 284 clusters in set A and 295 in set B, of which 63.4% from set A could be mapped to a cluster in set B with a median (range) correlation of 0.24 (0.03 – 0.58).Clusters represented similar yet distinct clinical phenotypes; e.g. patients diagnosed with “other headache syndrome” were separated into four distinct clusters characterized by migraines, neurofibromatosis, epilepsy or brain cancer, all resulting in patients presenting with headaches (Fig. 1 & 2). Though EMR databases tend to be noisy, our method was also able to differentiate misclassification from true cases; SLE patients with RA codes clustered separately from true RA cases.Figure 1.Two dimensional representation of Set A generated using dimensionality reduction (tSNE) and clustering (DBScan).Figure 2.Phenotype Spectrographs (PheSpecs) of four clusters characterized by “Other headache syndromes”, driven by codes relating to migraine, epilepsy, neurofibromatosis or brain cancer.Conclusion:We have shown that EMR data can be used to identify and visualize latent structure in patient categorizations, using an approach based on dimension reduction and clustering machine learning techniques. Our method can identify misclassified patients as well as separate patients with similar problems into subsets with different associated medical problems. Our approach adds a new and powerful tool to aid in the discovery of novel risk factors in complex, heterogeneous diseases.References:[1] Denny, J.C. et al. Bioinformatics (2010)[2]van der Maaten et al. Journal of Machine Learning Research (2008)[3] Ester, M. et al. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. (1996)Disclosure of Interests:Marc Maurits: None declared, Thomas Huizinga Grant/research support from: Ablynx, Bristol-Myers Squibb, Roche, Sanofi, Consultant of: Ablynx, Bristol-Myers Squibb, Roche, Sanofi, Marcel Reinders: None declared, Soumya Raychaudhuri: None declared, Elizabeth Karlson: None declared, Erik van den Akker: None declared, Rachel Knevel: None declared


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandre Maciel-Guerra ◽  
Necati Esener ◽  
Katharina Giebel ◽  
Daniel Lea ◽  
Martin J. Green ◽  
...  

AbstractStreptococcus uberis is one of the leading pathogens causing mastitis worldwide. Identification of S. uberis strains that fail to respond to treatment with antibiotics is essential for better decision making and treatment selection. We demonstrate that the combination of supervised machine learning and matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) mass spectrometry can discriminate strains of S. uberis causing clinical mastitis that are likely to be responsive or unresponsive to treatment. Diagnostics prediction systems trained on 90 individuals from 26 different farms achieved up to 86.2% and 71.5% in terms of accuracy and Cohen’s kappa. The performance was further increased by adding metadata (parity, somatic cell count of previous lactation and count of positive mastitis cases) to encoded MALDI-TOF spectra, which increased accuracy and Cohen’s kappa to 92.2% and 84.1% respectively. A computational framework integrating protein–protein networks and structural protein information to the machine learning results unveiled the molecular determinants underlying the responsive and unresponsive phenotypes.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3184
Author(s):  
Zhiyang Wu ◽  
Patrick Hundsdoerfer ◽  
Johannes H. Schulte ◽  
Kathy Astrahantseff ◽  
Senguel Boral ◽  
...  

Risk classification plays a crucial role in clinical management and therapy decisions in children with neuroblastoma. Risk assessment is currently based on patient criteria and molecular factors in single tumor biopsies at diagnosis. Growing evidence of extensive neuroblastoma intratumor heterogeneity drives the need for novel diagnostics to assess molecular profiles more comprehensively in spatial resolution to better predict risk for tumor progression and therapy resistance. We present a pilot study investigating the feasibility and potential of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to identify spatial peptide heterogeneity in neuroblastoma tissues of divergent current risk classification: high versus low/intermediate risk. Univariate (receiver operating characteristic analysis) and multivariate (segmentation, principal component analysis) statistical strategies identified spatially discriminative risk-associated MALDI-based peptide signatures. The AHNAK nucleoprotein and collapsin response mediator protein 1 (CRMP1) were identified as proteins associated with these peptide signatures, and their differential expression in the neuroblastomas of divergent risk was immunohistochemically validated. This proof-of-concept study demonstrates that MALDI-MSI combined with univariate and multivariate analysis strategies can identify spatially discriminative risk-associated peptide signatures in neuroblastoma tissues. These results suggest a promising new analytical strategy improving risk classification and providing new biological insights into neuroblastoma intratumor heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document