scholarly journals Assessing the energy transition in China towards carbon neutrality with a probabilistic framework

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shu Zhang ◽  
Wenying Chen

AbstractA profound transformation of China’s energy system is required to achieve carbon neutrality. Here, we couple Monte Carlo analysis with a bottom-up energy-environment-economy model to generate 3,000 cases with different carbon peak times, technological evolution pathways and cumulative carbon budgets. The results show that if emissions peak in 2025, the carbon neutrality goal calls for a 45–62% electrification rate, 47–78% renewable energy in primary energy supply, 5.2–7.9 TW of solar and wind power, 1.5–2.7 PWh of energy storage usage and 64–1,649 MtCO2 of negative emissions, and synergistically reducing approximately 80% of local air pollutants compared to the present level in 2050. The emission peak time and cumulative carbon budget have significant impacts on the decarbonization pathways, technology choices, and transition costs. Early peaking reduces welfare losses and prevents overreliance on carbon removal technologies. Technology breakthroughs, production and consumption pattern changes, and policy enhancement are urgently required to achieve carbon neutrality.

2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


Significance In a scenario in which it becomes increasingly evident that carbon neutrality will not be reached by 2050, governments may switch the focus of spending from the energy transition towards measures designed to address a changing climate. This is more likely in the developing world, which has less chance of reaping the economic opportunities of energy transition. Impacts Governments will have to incorporate both transitioning to clean energy and resilience against climate change impacts into their policies. As economies recover from the pandemic, developing countries' calls for financial assistance with energy transition costs will rise. Developed nations will emerge from the pandemic with stretched budgets, and some will face pressure to spend less on international aid. The need for heightened international cooperation to deliver the energy transition worldwide will test existing institutions.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4027
Author(s):  
Xavier Rixhon ◽  
Gauthier Limpens ◽  
Diederik Coppitters ◽  
Hervé Jeanmart ◽  
Francesco Contino

Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials, one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels, such as hydrogen, methane, and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion, economical storage solution for high capacity, and ability to couple sectors (i.e., electricity to transport, to heat, or to industry). However, the level of contribution of electric-energy carriers is unknown. To assess their role in the future, we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g., price of natural gas, efficiency of heat pump) to represent as closely as possible the future energy system. However, these parameters can be highly uncertain, especially for long-term planning. Consequently, this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that, compared to the deterministic cost-optimum situation, the system cost, accounting for uncertainties, becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties, their higher price, and uncertainty.


2021 ◽  
Vol 3 ◽  
Author(s):  
Jinxi Yang ◽  
Christian Azar ◽  
Kristian Lindgren

Transitioning to a low-carbon electricity system requires investments on a very large scale. These investments require access to capital, but that access can be challenging to obtain. Most energy system models do not (explicitly) model investment financing and thereby fail to take this challenge into account. In this study, we develop an agent-based model, where we explicitly include power sector investment financing. We find that different levels of financing constraints and capital availabilities noticeably impact companies' investment choices and economic performances and that this, in turn, impacts the development of the electricity capacity mix and the pace at which CO2 emissions are reduced. Limited access to capital can delay investments in low-carbon technologies. However, if the financing constraint is too relaxed, the risk of going bankrupt can increase. In general, companies that anticipate carbon prices too high above or too far below the actual development, along with those that use a low hurdle rate, are the ones that are more likely to go bankrupt. Emissions are cut more rapidly when the carbon tax grows faster, but there is overall a greater tendency for agents to go bankrupt when the tax grows faster. Our energy transition model may be particularly useful in the context of the least financially developed markets.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3640
Author(s):  
Davide Borelli ◽  
Francesco Devia ◽  
Corrado Schenone ◽  
Federico Silenzi ◽  
Luca A. Tagliafico

Liquefied Natural Gas (LNG) is a crucial resource to reduce the environmental impact of fossil-fueled vehicles, especially with regards to maritime transport, where LNG is increasingly used for ship bunkering. The present paper gives insights on how the installation of LNG tanks inside harbors can be capitalized to increase the energy efficiency of port cities and reduce GHG emissions. To this purpose, a novel integrated energy system is introduced. The Boil Off Gas (BOG) from LNG tanks is exploited in a combined plant, where heat and power are produced by a regenerated gas turbine cycle; at the same time, cold exergy from LNG regasification contributes to an increase in the efficiency of a vapor compression refrigeration cycle. In the paper, the integrated energy system is simulated by means of dynamic modeling under daily variable working conditions. Results confirm that the model is stable and able to determine the time behavior of the integrated plant. Energy saving is evaluated, and daily trends of key thermophysical parameters are reported and discussed. The analysis of thermal recovering from the flue gases shows that it is possible to recover a large energy share from the turbine exhausts. Hence, the system can generate electricity for port cold ironing and, through a secondary brine loop, cold exergy for a refrigeration plant. Overall, the proposed solution allows primary energy savings up to 22% when compared with equivalent standard technologies with the same final user needs. The exploitation of an LNG regasification process through smart integration of energy systems and implementation of efficient energy grids can contribute to greener energy management in harbors.


Energy Policy ◽  
2021 ◽  
Vol 155 ◽  
pp. 112374
Author(s):  
Yanfang Zhang ◽  
Xunpeng Shi ◽  
Xiangyan Qian ◽  
Sai Chen ◽  
Rui Nie

2021 ◽  
Vol 13 (11) ◽  
pp. 5861
Author(s):  
Marianne Pedinotti-Castelle ◽  
Pierre-Olivier Pineau ◽  
Kathleen Vaillancourt ◽  
Ben Amor

Transportation is a key factor in the fight against climate change. Consumer behavior changes in transportation are underrepresented in energy policies, even if they could be essential to achieve the fixed GHG emission reduction targets. To help quantify the role of behaviors in energy transition and their implications on the dynamics of an energy system, this study is conducted using the North American TIMES Energy Model, adapted to Quebec (Canada). A behavioral disruption scenario (an increase in carpooling) is introduced in the model’s transportation sector and is compared to a massive electrification scenario. Our results highlight the fact that a behavioral disruption can lead to the same GHG emission reductions (65%) by 2050 as an electrification policy, while alleviating different efforts (such as additional electrical capacity and additional costs) associated with massive electrification. Moreover, the results are sensitive to behavior-related parameters, such as social discount rates and car lifetimes.


Author(s):  
H. X. Liang ◽  
Q. W. Wang

This paper deals with the problem of energy utilization efficiency evaluation of a microturbine system for Combined Cooling, Heating and Power production (CCHP). The CCHP system integrates power generation, cooling and heating, which is a type of total energy system on the basis of energy cascade utilization principle, and has a large potential of energy saving and economical efficiency. A typical CCHP system has several options to fulfill energy requirements of its application, the electrical energy can be produced by a gas turbine, the heat can be generated by the waste heat of a gas turbine, and the cooling load can be satisfied by an absorption chiller driven by the waste heat of a gas turbine. The energy problem of the CCHP system is so large and complex that the existing engineering cannot provide satisfactory solutions. The decisive values for energetic efficiency evaluation of such systems are the primary energy generation cost. In this paper, in order to reveal internal essence of CCHP, we have analyzed typical CCHP systems and compared them with individual systems. The optimal operation of this system is dependent upon load conditions to be satisfied. The results indicate that CCHP brings 38.7 percent decrease in energy consumption comparing with the individual systems. A CCHP system saves fuel resources and has the assurance of economic benefits. Moreover, two basic CCHP models are presented for determining the optimum energy combination for the CCHP system with 100kW microturbine, and the more practical performances of various units are introduced, then Primary Energy Ratio (PER) and exergy efficiency (α) of various types and sizes systems are analyzed. Through exergy comparison performed for two kinds of CCHP systems, we have identified the essential principle for high performance of the CCHP system, and consequently pointed out the promising features for further development.


2021 ◽  
pp. 1-25
Author(s):  
Anne Kallies

Abstract The law and regulation of the energy sector in Australia is subject to overlapping responsibilities of both federal and state governments. Crucially for energy transition efforts, neither energy, environment nor climate is mentioned in the Australian Constitution. Australia has a tradition of creative cooperative federalism solutions for responding to problems of national importance. In the energy sector this has resulted in an intricate national framework for energy markets, which relies on mirror legislation passed by participating states, with oversight by state and federal executive governments. Independently of these frameworks, both federal and state governments have passed climate change legislation, which crucially includes renewable energy support mechanisms. At a time when a rapid transition to a decarbonized energy system is essential, legal frameworks struggle to respond in a timely fashion. The political discourse around energy has become increasingly toxic – reflecting a dysfunctional state–federal relationship in energy and climate law. Australia needs to consider whether its cooperative federalism solutions are sufficient to support the energy transition and how climate law at the state and federal levels interacts with energy market legal frameworks.


Sign in / Sign up

Export Citation Format

Share Document