scholarly journals Gut microbiome development in early childhood is affected by day care attendance

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Amnon Amir ◽  
Ortal Erez-Granat ◽  
Tzipi Braun ◽  
Katya Sosnovski ◽  
Rotem Hadar ◽  
...  

AbstractThe human gut microbiome develops during the first years of life, followed by a relatively stable adult microbiome. Day care attendance is a drastic change that exposes children to a large group of peers in a diverse environment for prolonged periods, at this critical time of microbial development, and therefore has the potential to affect microbial composition. We characterize the effect of day care on the gut microbial development throughout a single school year in 61 children from 4 different day care facilities, and in additional 24 age-matched home care children (n = 268 samples, median age of entering the study was 12 months). We show that day care attendance is a significant and impactful factor in shaping the microbial composition of the growing child, the specific daycare facility and class influence the gut microbiome, and each child becomes more similar to others in their day care. Furthermore, in comparison to home care children, day care children have a different gut microbial composition, with enrichment of taxa more frequently observed in older populations. Our results provide evidence that daycare may be an external factor that contributes to gut microbiome maturation and make-up in early childhood.

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1552-1552
Author(s):  
Edward Davis ◽  
Carmen Wong ◽  
John Bouranis ◽  
Thomas Sharpton ◽  
Emily Ho

Abstract Objectives Zinc is an essential micronutrient critical for a variety of cellular processes, including immune function. In US, 12% of the population do not consume the EAR for zinc. In older populations the prevalence of inadequate zinc intake increases to ∼40%. Moreover, zinc levels are also often depressed in aged individuals, even when consuming a zinc-adequate diet. Thus, older populations can be highly susceptible to zinc deficiency. Both zinc deficiency and aging are associated with progressive immune dysfunction and chronic inflammation that could be correlated with the promotion of many age-related diseases. Increasing evidence indicates that the interaction among gut microbiota, the immune system, and diet contributes to age-related inflammation. Objectives: The goal of this study is to determine the importance of zinc status and age with respect to composition of the gut microbiome. We hypothesize that age and zinc status are correlated with specific taxa in the gut microbiome. Further, we expect to see additional correlations, both positive and negative, between these significant taxa and markers of host inflammation. Methods We studied the effects of dietary zinc supplementation and marginal zinc deficiency on changes in microbial communities in young and old mice. Young (2 mo) and old (24 mo) C57Bl/6 mice were fed a zinc adequate (30ppm Zn), zinc supplemented (300ppm Zn), or marginal zinc deficient (6 ppm Zn) diet for six weeks. 16S rRNA amplicon sequencing was performed on fecal samples at study start and end; cecal and colon samples at study end. Results Age correlated with overall microbial composition in the gut, according to a PERMANOVA test and a permutation test, regardless of zinc status. Gut microbiome content of young mice had significant overall correlation with zinc status, while the gut microbiome of old mice was not significantly affected by zinc status. Conclusions Age effects on the microbiome are significant and must be considered when studying effects of diet on the host gut microbiome. Zinc status, especially deficiency, elicits a varied effect on the microbiome that is dependent upon host age. Sampling site (i.e., colon, cecum, feces) had a small but significant effect on specific microbial taxa. Funding Sources NIFA, USDA.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Helen Adam

The importance of recognising, valuing and respecting a child’s family, culture, language and values is central to socially just education and is increasingly articulated in educational policy worldwide. Inclusive children’s literature can support children’s human rights and contribute to equitable and socially just outcomes for all children. However, evidence suggests many educational settings provide monocultural book collections which are counterproductive to principles of diversity and social justice. Further, that educators’ understandings and beliefs about diversity can contribute to inequitable provision and use of diverse books and to inequitable outcomes of book sharing for many children. This paper reports on a larger study investigating factors and relationships influencing the use of children’s literature to support principles of cultural diversity in the kindergarten rooms of long day care centres. The study was conducted within an ontological perspective of constructivism and an epistemological perspective of interpretivism informed by sociocultural theory. A mixed methods approach was adopted, and convergent design was employed interpret significant relationships and their meanings. Twenty-four educators and 110 children from four long day care centres in Western Australia participated. Data were collected through semi-structured interviews, video-based observations, field notes, document analysis and a book audit. This study firstly identified that current book collections in kindergarten rooms of long day care centres promote mono-cultural viewpoints and ‘othering’ of minority groups through limited access to books portraying inclusive and authentic cultural diversity. Secondly, that educators had limited understandings of the role of literature in acknowledging and valuing diversity and rarely used it to promote principles of diversity, resulting in a practice of “othering” those from minority group backgrounds. The key challenges which emerged from the study concerned beliefs, understanding and confidence of educators about diversity and inclusion, and the impact of these on their approaches to promoting principles of diversity through the use of children’s books. This research contributes to discussion on the value of children’s literature in achieving international principles of diversity. These findings have important social justice implications. The outcomes of this study have implications for educators, policy makers, early childhood organisations and those providing higher education and training for early childhood educators.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shasha Xiang ◽  
Kun Ye ◽  
Mian Li ◽  
Jian Ying ◽  
Huanhuan Wang ◽  
...  

Abstract Background Xylitol, a white or transparent polyol or sugar alcohol, is digestible by colonic microorganisms and promotes the proliferation of beneficial bacteria and the production of short-chain fatty acids (SCFAs), but the mechanism underlying these effects remains unknown. We studied mice fed with 0%, 2% (2.17 g/kg/day), or 5% (5.42 g/kg/day) (weight/weight) xylitol in their chow for 3 months. In addition to the in vivo digestion experiments in mice, 3% (weight/volume) (0.27 g/kg/day for a human being) xylitol was added to a colon simulation system (CDMN) for 7 days. We performed 16S rRNA sequencing, beneficial metabolism biomarker quantification, metabolome, and metatranscriptome analyses to investigate the prebiotic mechanism of xylitol. The representative bacteria related to xylitol digestion were selected for single cultivation and co-culture of two and three bacteria to explore the microbial digestion and utilization of xylitol in media with glucose, xylitol, mixed carbon sources, or no-carbon sources. Besides, the mechanisms underlying the shift in the microbial composition and SCFAs were explored in molecular contexts. Results In both in vivo and in vitro experiments, we found that xylitol did not significantly influence the structure of the gut microbiome. However, it increased all SCFAs, especially propionate in the lumen and butyrate in the mucosa, with a shift in its corresponding bacteria in vitro. Cross-feeding, a relationship in which one organism consumes metabolites excreted by the other, was observed among Lactobacillus reuteri, Bacteroides fragilis, and Escherichia coli in the utilization of xylitol. At the molecular level, we revealed that xylitol dehydrogenase (EC 1.1.1.14), xylulokinase (EC 2.7.1.17), and xylulose phosphate isomerase (EC 5.1.3.1) were key enzymes in xylitol metabolism and were present in Bacteroides and Lachnospiraceae. Therefore, they are considered keystone bacteria in xylitol digestion. Also, xylitol affected the metabolic pathway of propionate, significantly promoting the transcription of phosphate acetyltransferase (EC 2.3.1.8) in Bifidobacterium and increasing the production of propionate. Conclusions Our results revealed that those key enzymes for xylitol digestion from different bacteria can together support the growth of micro-ecology, but they also enhanced the concentration of propionate, which lowered pH to restrict relative amounts of Escherichia and Staphylococcus. Based on the cross-feeding and competition among those bacteria, xylitol can dynamically balance proportions of the gut microbiome to promote enzymes related to xylitol metabolism and SCFAs.


2021 ◽  
Author(s):  
Yueqiong Ni ◽  
Zoltan Lohinai ◽  
Yoshitaro Heshiki ◽  
Balazs Dome ◽  
Judit Moldvay ◽  
...  

AbstractCachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Roessler ◽  
F Zimmermann ◽  
D Schmidt ◽  
U Escher ◽  
A Jasina ◽  
...  

Abstract Background and aims The modulation of serum lipids, in particular of the low-density lipoprotein cholesterol (LDL-C), by statins varies between individuals. The mechanisms regulating this interindividual variation are only poorly understood. Here, we investigated the relation between the gut microbiome and the regulatory properties of atorvastatin on the serum lipidome using mice with depleted gut microbiome. Methods Over a period of 6 weeks, mice (C57BL/6) with either an intact (conventional mice, CONV, n=24) or antibiotic-based depleted gut microbiome (antibiotic treated mice, ABS, n=16) were put on standard chow diet (SCD) or high fat diet (HFD), respectively. During the last 4 weeks of treatment atorvastatin (Ator, 10mg/kg body weight/day) or control vehicle was administered via daily oral gavage. Blood lipids (total cholesterol, VLDL, LDL-C, HDL-C) and serum sphingolipids were compared among the groups. The expressions of hepatic and intestinal genes involved in cholesterol metabolism were analyzed by qRT-PCR. Alterations in the gut microbiota profile of mice with intact gut microbiome were examined using 16S RNA qRT-PCR. Results In CONV mice, HFD led to significantly increased blood LDL-C levels as compared with SCD (HFD: 36.8±1.4 mg/dl vs. SCD: 22.0±1.8 mg/dl; P<0.01). In CONV mice atorvastatin treatment significantly reduced blood LDL-C levels after HFD, whereas in ABS mice the LDL-C lowering effect of atorvastatin was markedly attenuated (CONV+HFD+Ator: 31.0±1.8 mg/dl vs. ABS+HFD+Ator: 46.4±3 mg/dl; P<0.01). A significant reduction in the abundance of several plasma lipids, in particular sphingolipids and glycerophospholipids upon atorvastatin treatment was observed in CONV mice, but not in ABS mice. The expressions of distinct hepatic and intestinal cholesterol-regulating genes (ldlr, srebp2, pcsk9 and npc1l1) upon atorvastatin treatment were significantly altered in gut microbiota depleted mice. In response to HFD a decrease in the relative abundance of the bacterial phyla Bacteroides and an increase in the relative abundance of Firmicutes was observed. The altered ratio between Bacteroides and Firmicutes in HFD fed mice was partly reversed upon atorvastatin treatment. Conclusions Our findings indicate a crucial role of the gut microbiome for the regulatory properties of atorvastatin on the serum lipidome and, in turn, support a critical impact of atorvastatin on the gut microbial composition. The results provide novel insights into potential microbiota related mechanisms underlying interindividual variation in modulation of the serum lipidome by statins, given interindividual differences in microbiome composition and function. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): German Heart Research Foundation


2021 ◽  
Vol 9 (4) ◽  
pp. 815
Author(s):  
Malena dos Santos Guilherme ◽  
Vu Thu Thuy Nguyen ◽  
Christoph Reinhardt ◽  
Kristina Endres

The gut brain axis seems to modulate various psychiatric and neurological disorders such as Alzheimer’s disease (AD). Growing evidence has led to the assumption that the gut microbiome might contribute to or even present the nucleus of origin for these diseases. In this regard, modifiers of the microbial composition might provide attractive new therapeutics. Aim of our study was to elucidate the effect of a rigorously changed gut microbiome on pathological hallmarks of AD. 5xFAD model mice were treated by antibiotics or probiotics (L. acidophilus and L. rhamnosus) for 14 weeks. Pathogenesis was measured by nest building capability and plaque deposition. The gut microbiome was affected as expected: antibiotics significantly reduced viable commensals, while probiotics transiently increased Lactobacillaceae. Nesting score, however, was only improved in antibiotics-treated mice. These animals additionally displayed reduced plaque load in the hippocampus. While various physiological parameters were not affected, blood sugar was reduced and serum glucagon level significantly elevated in the antibiotics-treated animals together with a reduction in the receptor for advanced glycation end products RAGE—the inward transporter of Aβ peptides of the brain. Assumedly, the beneficial effect of the antibiotics was based on their anti-diabetic potential.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 463
Author(s):  
Mariusz Sikora ◽  
Albert Stec ◽  
Magdalena Chrabaszcz ◽  
Aleksandra Knot ◽  
Anna Waskiel-Burnat ◽  
...  

(1) Background: A growing body of evidence highlights that intestinal dysbiosis is associated with the development of psoriasis. The gut–skin axis is the novel concept of the interaction between skin diseases and microbiome through inflammatory mediators, metabolites and the intestinal barrier. The objective of this study was to synthesize current data on the gut microbial composition in psoriasis. (2) Methods: We conducted a systematic review of studies investigating intestinal microbiome in psoriasis, using the PRISMA checklist. We searched MEDLINE, EMBASE, and Web of Science databases for relevant published articles (2000–2020). (3) Results: All of the 10 retrieved studies reported alterations in the gut microbiome in patients with psoriasis. Eight studies assessed alpha- and beta-diversity. Four of them reported a lack of change in alpha-diversity, but all confirmed significant changes in beta-diversity. At the phylum-level, at least two or more studies reported a lower relative abundance of Bacteroidetes, and higher Firmicutes in psoriasis patients versus healthy controls. (4) Conclusions: There is a significant association between alterations in gut microbial composition and psoriasis; however, there is high heterogeneity between studies. More unified methodological standards in large-scale studies are needed to understand microbiota’s contribution to psoriasis pathogenesis and its modulation as a potential therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document