scholarly journals Handheld SERS coupled with QuEChERs for the sensitive analysis of multiple pesticides in basmati rice

2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Natasha Logan ◽  
Simon A. Haughey ◽  
Lin Liu ◽  
D. Thorburn Burns ◽  
Brian Quinn ◽  
...  

AbstractPesticides are a safety issue globally and cause serious concerns for the environment, wildlife and human health. The handheld detection of four pesticide residues widely used in Basmati rice production using surface-enhanced Raman spectroscopy (SERS) is reported. Different SERS substrates were synthesised and their plasmonic and Raman scattering properties evaluated. Using this approach, detection limits for pesticide residues were achieved within the range of 5 ppb-75 ppb, in solvent. Various extraction techniques were assessed to recover pesticide residues from spiked Basmati rice. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERs) acetate extraction was applied and characteristic spectral data for each pesticide was obtained from the spiked matrix and analysed using handheld-SERS. This approach allowed detection limits within the matrix conditions to be markedly improved, due to the rapid aggregation of nanogold caused by the extraction medium. Thus, detection limits for three out of four pesticides were detectable below the Maximum Residue Limits (MRLs) of 10 ppb in Basmati rice. Furthermore, the multiplexing performance of handheld-SERS was assessed in solvent and matrix conditions. This study highlights the great potential of handheld-SERS for the rapid on-site detection of pesticide residues in rice and other commodities.

2000 ◽  
Vol 54 (8) ◽  
pp. 1126-1135 ◽  
Author(s):  
P. A. Mosier-Boss ◽  
S. H. Lieberman

The use of normal Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) of cationic-coated, silver substrates to detect nitrate and sulfate ions in aqueous environments is examined. For normal Raman spectroscopy using near-infrared excitation, a linear concentration response was observed with detection limits of 260 and 440 ppm for nitrate and sulfate, respectively. Detection limits in the low parts-per-million concentration range for these anions are achieved by using cationic-coated, silver SERS substrates. Adsorption of the anions on the cationic-coated SERS substrates is described by a Frumkin isotherm.


2004 ◽  
Author(s):  
Chetan Shende ◽  
Alan Gift ◽  
Frank Inscore ◽  
Paul Maksymiuk ◽  
Stuart Farquharson

2021 ◽  
Author(s):  
revathy m s ◽  
D Murugesan ◽  
Naidu Dhanpal Jayram

Abstract Thin films and Surface Enhanced Raman spectroscopy have a strong bonding towards development of Sensors. From last 4 decades SERS has been used as effective tool for detection of toxic dyes, in food industry and agriculture world. To minimize the cost and fabrication over large surface is the most challenging task in substrate fabrication. In the present work an attempt has been made towards dual coatings, which could act as an effective SERS Substrates. An effective and facile approach of low cost bi-metallic Nanostructured film has been fabricated using thermal evaporation. Using the standard characterization techniques such as FE-SEM and XRD, the obtained films were Rhodamine 6G was used as an analyte for the SERS studies. The detection of R6G was up to 10− 10mol l− 1solution.The present bi-metallic coating can be serves as an excellent SERS active surface and provides a versatile pathway to fabricate anisotropic nanostructure on a glass film.


The Analyst ◽  
2014 ◽  
Vol 139 (24) ◽  
pp. 6426-6434 ◽  
Author(s):  
Kelley C. Henderson ◽  
Edward S. Sheppard ◽  
Omar E. Rivera-Betancourt ◽  
Joo-Young Choi ◽  
Richard A. Dluhy ◽  
...  

The detection limits by NA-SERS and qPCR for the bacterial pathogenMycoplasma pneumoniaewere compared.


2007 ◽  
Vol 61 (9) ◽  
pp. 994-1000 ◽  
Author(s):  
Alyson V. Whitney ◽  
Francesca Casadio ◽  
Richard P. Van Duyne

Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 × 10−6 M or 15 ng/μL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Mustafa Culha ◽  
Brian Cullum ◽  
Nickolay Lavrik ◽  
Charles K. Klutse

While surface-enhanced Raman spectroscopy (SERS) has been attracting a continuously increasing interest of scientific community since its discovery, it has enjoyed a particularly rapid growth in the last decade. Most notable recent advances in SERS include novel technological approaches to SERS substrates and innovative applications of SERS in medicine and molecular biology. While a number of excellent reviews devoted to SERS appeared in the literature over the last two decades, we will focus this paper more specifically on several promising trends that have been highlighted less frequently. In particular, we will briefly overview strategies in designing and fabricating SERS substrates using deterministic patterning and then cover most recent biological applications of SERS.


Sign in / Sign up

Export Citation Format

Share Document