scholarly journals Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19

Author(s):  
Zhenhua Li ◽  
Zhenzhen Wang ◽  
Phuong-Uyen C. Dinh ◽  
Dashuai Zhu ◽  
Kristen D. Popowski ◽  
...  
1996 ◽  
Author(s):  
S. C. Koenig ◽  
Craig Reister ◽  
J. Schtaub ◽  
Gary Muniz ◽  
Tim Fergusan

Life Sciences ◽  
2021 ◽  
Vol 276 ◽  
pp. 119374
Author(s):  
Roghayeh Navabi ◽  
Babak Negahdari ◽  
Ensiyeh Hajizadeh-Saffar ◽  
Mostafa Hajinasrollah ◽  
Yaser Jenab ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 584
Author(s):  
Natalia Nunez ◽  
Louis Réot ◽  
Elisabeth Menu

Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant’s microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother–fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant’s microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant’s health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Robert W. Cross ◽  
Zachary A. Bornholdt ◽  
Abhishek N. Prasad ◽  
Viktoriya Borisevich ◽  
Krystle N. Agans ◽  
...  

AbstractMonoclonal antibodies (mAbs) and remdesivir, a small-molecule antiviral, are promising monotherapies for many viruses, including members of the genera Marburgvirus and Ebolavirus (family Filoviridae), and more recently, SARS-CoV-2. One of the major challenges of acute viral infections is the treatment of advanced disease. Thus, extending the window of therapeutic intervention is critical. Here, we explore the benefit of combination therapy with a mAb and remdesivir in a non-human primate model of Marburg virus (MARV) disease. While rhesus monkeys are protected against lethal infection when treatment with either a human mAb (MR186-YTE; 100%), or remdesivir (80%), is initiated 5 days post-inoculation (dpi) with MARV, no animals survive when either treatment is initiated alone beginning 6 dpi. However, by combining MR186-YTE with remdesivir beginning 6 dpi, significant protection (80%) is achieved, thereby extending the therapeutic window. These results suggest value in exploring combination therapy in patients presenting with advanced filovirus disease.


2017 ◽  
Vol 140 ◽  
pp. 95-105 ◽  
Author(s):  
Géraldine Piorkowski ◽  
Frédéric Jacquot ◽  
Gilles Quérat ◽  
Caroline Carbonnelle ◽  
Delphine Pannetier ◽  
...  

2007 ◽  
Vol &NA; ◽  
pp. S8
Author(s):  
Ponpan Matangkasombut ◽  
Muriel Pichavant ◽  
Takahiro Yasumi ◽  
Carrie Hendricks ◽  
Rosemarie H. DeKruyff ◽  
...  

2017 ◽  
Vol 6 (5) ◽  
pp. 9 ◽  
Author(s):  
Yu-Chi Liu ◽  
Anthony Herr Cheun Ng ◽  
Xu Wen Ng ◽  
Peng Yan ◽  
Subbu S. Venkatraman ◽  
...  

2009 ◽  
Vol 5 (4S_Part_8) ◽  
pp. P245-P245
Author(s):  
Jay S. Schneider ◽  
Emmanuel Decamp ◽  
Michael Hill ◽  
Erwan Bezard ◽  
Alan Crossman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document