scholarly journals Tritiation of aryl thianthrenium salts with a molecular palladium catalyst

Nature ◽  
2021 ◽  
Vol 600 (7889) ◽  
pp. 444-449
Author(s):  
Da Zhao ◽  
Roland Petzold ◽  
Jiyao Yan ◽  
Dieter Muri ◽  
Tobias Ritter

AbstractTritium labelling is a critical tool for investigating the pharmacokinetic and pharmacodynamic properties of drugs, autoradiography, receptor binding and receptor occupancy studies1. Tritium gas is the preferred source of tritium for the preparation of labelled molecules because it is available in high isotopic purity2. The introduction of tritium labels from tritium gas is commonly achieved by heterogeneous transition-metal-catalysed tritiation of aryl (pseudo)halides. However, heterogeneous catalysts such as palladium supported on carbon operate through a reaction mechanism that also results in the reduction of other functional groups that are prominently featured in pharmaceuticals3. Homogeneous palladium catalysts can react chemoselectively with aryl (pseudo)halides but have not been used for hydrogenolysis reactions because, after required oxidative addition, they cannot split dihydrogen4. Here we report a homogenous hydrogenolysis reaction with a well defined, molecular palladium catalyst. We show how the thianthrene leaving group—which can be introduced selectively into pharmaceuticals by late-stage C–H functionalization5—differs in its coordinating ability to relevant palladium(II) catalysts from conventional leaving groups to enable the previously unrealized catalysis with dihydrogen. This distinct reactivity combined with the chemoselectivity of a well defined molecular palladium catalyst enables the tritiation of small-molecule pharmaceuticals that contain functionality that may otherwise not be tolerated by heterogeneous catalysts. The tritiation reaction does not require an inert atmosphere or dry conditions and is therefore practical and robust to execute, and could have an immediate impact in the discovery and development of pharmaceuticals.

1980 ◽  
Vol 45 (8) ◽  
pp. 2171-2178
Author(s):  
Jiří Závada ◽  
Magdalena Pánková

Approximate rates of the competing syn- and anti-pathways have been determined in t-C4H9OK-t-C4H9OH promoted elimination from two homologous series of tosylates: I-OTs trans-III (R = H, CH3, C2H5, n-C3H7, i-C3H7, t-C4H9) and II-OTs trans-IV (R = CH3, C2H5, n-C3H7, i-C3H7, t-C4H9). A comparison has been made with rates of the same processes in the (+) elimination of the corresponding trimethylammonium salts I-N(CH3)3 trans-III and (+) II-N(CH3)3 trans-IV. The title effect is demonstrated by a comparative analysis of the rate patterns obtained for the two leaving groups.


2021 ◽  
Author(s):  
Nazanin Kordestani ◽  
Hadi Amiri Rudbari ◽  
Alexandra R Fernandes ◽  
Luís R Raposo ◽  
André Luz ◽  
...  

To investigate the effect of different halogen substituents, leaving groups and the flexibility of ligand on the anticancer activity of copper complexes, sixteen copper(II) complexes with eight different tridentate Schiff-base...


2003 ◽  
Vol 02 (03) ◽  
pp. 357-369 ◽  
Author(s):  
CUNYUAN ZHAO ◽  
DONG-QI WANG ◽  
DAVID LEE PHILLIPS

We report a theoretical study of the cyclopropanation reactions of EtZnCHI, (EtZn)2CH EtZnCHZnI, and EtZnCIZnI radicals with ethylene. The mono-zinc and gem-dizinc radical carbenoids can undergo cyclopropanation reactions with ethylene via a two-step reaction mechanism similar to that previously reported for the CH2I and IZnCH2 radicals. The barrier for the second reaction step (ring closure) was found to be highly dependent on the leaving group of the cyclopropanation reaction. In some cases, the (di)zinc carbenoid radical undergoes cyclopropanation via a low barrier of about 5–7 kcal/mol on the second reaction step and this is lower than the CH2I radical reaction which has a barrier of about 13.5 kcal/mol for the second reaction step. Our results suggest that in some cases, zinc radical carbenoid species have cyclopropanation reaction barriers that can be competitive with their related molecular Simmons-Smith carbenoid species reactions and produce somewhat different cyclopropanated products and leaving groups.


2016 ◽  
Vol 9 (7) ◽  
pp. 2177-2196 ◽  
Author(s):  
Xiaoxia Chang ◽  
Tuo Wang ◽  
Jinlong Gong

This review describes the current understanding of CO2 photoreduction on the surface of heterogeneous catalysts with a particular focus on the reaction mechanism and pathways as well as the adsorption/activation of CO2.


2003 ◽  
Vol 376 (3) ◽  
pp. 813-821 ◽  
Author(s):  
Sheraz GUL ◽  
Sanjiv SONKARIA ◽  
Surapong PINITGLANG ◽  
José FLOREZ-ALVAREZ ◽  
Syeed HUSSAIN ◽  
...  

To investigate the hypothesis that decreased hapten flexibility may lead to increased catalytic antibody activity, we used two closely related immunogens differing only in the flexibility of the atomic framework around the structural motif of the haptens, analogous to the reaction centre of the corresponding substrates. Identical leaving-group determinants in the haptens and identical leaving groups in the substrates removed the ambiguity inherent in some data reported in the literature. Anti-phosphate and anti-phosphonate kinetically homogeneous polyclonal catalytic antibody preparations were compared by using carbonate and ester substrates respectively, each containing a 4-nitrophenolate leaving group. Synthetic routes to a new phosphonate hapten and new ester substrate were developed. The kinetic advantage of the more rigid anti-phosphonate/ester system was demonstrated at pH 8.0 by a 13-fold advantage in kcat/knon-cat and a 100-fold advantage in the proficiency constant, kcat/knon-cat·Km. Despite these differences, the pH-dependences of the kinetic and binding characteristics and the results of chemical modification studies suggest closely similar catalytic mechanisms. The possible origin of the kinetic advantage of the more rigid hapten/substrate system is discussed.


1972 ◽  
Vol 50 (8) ◽  
pp. 1188-1191
Author(s):  
George H. Schmid ◽  
Aaron W. Wolkoff

A comparison of the products from elimination reactions of a number of compounds containing various leaving groups with those containing the N-methyl oxypyridinium leaving group suggests that the elimination is not occurring by means of a simple E1 mechanism. Changing the anion of the salt from iodide to methyl-sulphate and tetrafluoroborate affects the product composition indicating that the anion is taking part in the reaction. The mechanism of this reaction appears to be on the E1-E2 borderline.


2003 ◽  
Vol 68 (10) ◽  
pp. 1969-1984 ◽  
Author(s):  
Martina Bejblová ◽  
Petr Zámostný ◽  
Libor Červený ◽  
Jiří Čejka

Catalytic hydrogenation and hydrogenolysis of acetophenone was investigated on supported palladium catalysts in liquid phase at temperatures 30-130 °C and pressures 1-10 MPa. A number of supports like active carbon, alumina and zeolites Beta and ZSM-5 were employed. The effects of solvent and support on the reaction mechanism of acetophenone transformation were studied. Catalysts with acid zeolite support showed a very high activity in transformation of acetophenone to ethylbenzene. Based on a kinetic model, the reaction rates of acetophenone transformation to ethylbenzene on Pd/C and Pd/Al2O3 catalysts were discussed. The kinetic model confirmed that the transformation of acetophenone to ethylbenzene proceeds primarily via a hydrogenation-dehydration mechanism and the effect of the direct hydrogenolysis of the C=O bond of acetophenone is insignificant.


2015 ◽  
Vol 6 (46) ◽  
pp. 7945-7948 ◽  
Author(s):  
Alexander Ilchev ◽  
Rueben Pfukwa ◽  
Lebohang Hlalele ◽  
Marica Smit ◽  
Bert Klumperman

The negative effect that a RAFT agent with a poor leaving group has on the evolution of molecular dispersity in a RAFT-mediated polymerization was shown to be mitigated by performing the polymerization in semi-batch mode.


2016 ◽  
Vol 52 (63) ◽  
pp. 9777-9780 ◽  
Author(s):  
Xu Tian ◽  
Fanzhi Yang ◽  
Dace Rasina ◽  
Michaela Bauer ◽  
Svenja Warratz ◽  
...  

C–H arylations were accomplished with a user-friendly heterogeneous palladium catalyst in the biomass-derived γ-valerolactone (GVL) as an environmentally-benign reaction medium.


Sign in / Sign up

Export Citation Format

Share Document