scholarly journals Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits

2018 ◽  
Vol 50 (9) ◽  
pp. 1318-1326 ◽  
Author(s):  
Yan Zhang ◽  
Guanghao Qi ◽  
Ju-Hyun Park ◽  
Nilanjan Chatterjee
2017 ◽  
Author(s):  
Yan Zhang ◽  
Guanghao Qi ◽  
Ju-Hyun Park ◽  
Nilanjan Chatterjee

AbstractSummary-level statistics from genome-wide association studies are now widely used to estimate heritability and co-heritability of traits using the popular linkage-disequilibrium-score (LD-score) regression method. We develop a likelihood-based approach for analyzing summary-level statistics and external LD information to estimate common variants effect-size distributions, characterized by proportion of underlying susceptibility SNPs and a flexible normal-mixture model for their effects. Analysis of summary-level results across 32 GWAS reveals that while all traits are highly polygenic, there is wide diversity in the degrees of polygenicity. The effect-size distributions for susceptibility SNPs could be adequately modeled by a single normal distribution for traits related to mental health and ability and by a mixture of two normal distributions for all other traits. Among quantitative traits, we predict the sample sizes needed to identify SNPs which explain 80% of GWAS heritability to be between 300K-500K for some of the early growth traits, between 1-2 million for some anthropometric and cholesterol traits and multiple millions for body mass index and some others. The corresponding predictions for disease traits are between 200K-400K for inflammatory bowel diseases, close to one million for a variety of adult onset chronic diseases and between 1-2 million for psychiatric diseases.


PLoS Genetics ◽  
2015 ◽  
Vol 11 (12) ◽  
pp. e1005717 ◽  
Author(s):  
Wesley K. Thompson ◽  
Yunpeng Wang ◽  
Andrew J. Schork ◽  
Aree Witoelar ◽  
Verena Zuber ◽  
...  

2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Dinesh K. Saini ◽  
Yuvraj Chopra ◽  
Jagmohan Singh ◽  
Karansher S. Sandhu ◽  
Anand Kumar ◽  
...  

Author(s):  
Nasa Sinnott-Armstrong ◽  
Sahin Naqvi ◽  
Manuel Rivas ◽  
Jonathan K Pritchard

SummaryGenome-wide association studies (GWAS) have been used to study the genetic basis of a wide variety of complex diseases and other traits. However, for most traits it remains difficult to interpret what genes and biological processes are impacted by the top hits. Here, as a contrast, we describe UK Biobank GWAS results for three molecular traits—urate, IGF-1, and testosterone—that are biologically simpler than most diseases, and for which we know a great deal in advance about the core genes and pathways. Unlike most GWAS of complex traits, for all three traits we find that most top hits are readily interpretable. We observe huge enrichment of significant signals near genes involved in the relevant biosynthesis, transport, or signaling pathways. We show how GWAS data illuminate the biology of variation in each trait, including insights into differences in testosterone regulation between females and males. Meanwhile, in other respects the results are reminiscent of GWAS for more-complex traits. In particular, even these molecular traits are highly polygenic, with most of the variance coming not from core genes, but from thousands to tens of thousands of variants spread across most of the genome. Given that diseases are often impacted by many distinct biological processes, including these three, our results help to illustrate why so many variants can affect risk for any given disease.


Author(s):  
Jack W. O’Sullivan ◽  
John P. A. Ioannidis

AbstractWith the establishment of large biobanks, discovery of single nucleotide polymorphism (SNPs) that are associated with various phenotypes has been accelerated. An open question is whether SNPs identified with genome-wide significance in earlier genome-wide association studies (GWAS) are replicated also in later GWAS conducted in biobanks. To address this question, the authors examined a publicly available GWAS database and identified two, independent GWAS on the same phenotype (an earlier, “discovery” GWAS and a later, replication GWAS done in the UK biobank). The analysis evaluated 136,318,924 SNPs (of which 6,289 had reached p<5e-8 in the discovery GWAS) from 4,397,962 participants across nine phenotypes. The overall replication rate was 85.0% and it was lower for binary than for quantitative phenotypes (58.1% versus 94.8% respectively). There was a18.0% decrease in SNP effect size for binary phenotypes, but a 12.0% increase for quantitative phenotypes. Using the discovery SNP effect size, phenotype trait (binary or quantitative), and discovery p-value, we built and validated a model that predicted SNP replication with area under the Receiver Operator Curve = 0.90. While non-replication may often reflect lack of power rather than genuine false-positive findings, these results provide insights about which discovered associations are likely to be seen again across subsequent GWAS.


2019 ◽  
Author(s):  
Jan A. Freudenthal ◽  
Markus J. Ankenbrand ◽  
Dominik G. Grimm ◽  
Arthur Korte

AbstractMotivationGenome-wide association studies (GWAS) are one of the most commonly used methods to detect associations between complex traits and genomic polymorphisms. As both genotyping and phenotyping of large populations has become easier, typical modern GWAS have to cope with massive amounts of data. Thus, the computational demand for these analyses grew remarkably during the last decades. This is especially true, if one wants to implement permutation-based significance thresholds, instead of using the naïve Bonferroni threshold. Permutation-based methods have the advantage to provide an adjusted multiple hypothesis correction threshold that takes the underlying phenotypic distribution into account and will thus remove the need to find the correct transformation for non Gaussian phenotypes. To enable efficient analyses of large datasets and the possibility to compute permutation-based significance thresholds, we used the machine learning framework TensorFlow to develop a linear mixed model (GWAS-Flow) that can make use of the available CPU or GPU infrastructure to decrease the time of the analyses especially for large datasets.ResultsWe were able to show that our application GWAS-Flow outperforms custom GWAS scripts in terms of speed without loosing accuracy. Apart from p-values, GWAS-Flow also computes summary statistics, such as the effect size and its standard error for each individual marker. The CPU-based version is the default choice for small data, while the GPU-based version of GWAS-Flow is especially suited for the analyses of big data.AvailabilityGWAS-Flow is freely available on GitHub (https://github.com/Joyvalley/GWAS_Flow) and is released under the terms of the MIT-License.


Sign in / Sign up

Export Citation Format

Share Document