scholarly journals Experimental investigations on graphene oxide/rubber composite thermal conductivity

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joanna Wilk ◽  
Robert Smusz ◽  
Ryszard Filip ◽  
Grzegorz Chmiel ◽  
Tomasz Bednarczyk

Abstract Graphene oxide/rubber composites were experimentally investigated for obtaining their thermal properties. Three kinds of the composite matrix material have been used: NBR, HNBR and FKM. The reduced graphene oxide in the form of crumped flakes has been applied as the filler influencing on thermal conductivity of the composites. Two values of graphene oxide weight concentration have been taken into account in the investigation. Thermal conductivity of the composites and basic matrix has been measured by the professional apparatus with the use of the guarded heat plate method. Before measurements the preliminary tests using the simplified comparative method have been performed. The results obtained, both from preliminary tests and using the guarded heat plate method, show an increase in thermal conductivity with increasing the reduced graphene oxide content in the composite. The experimental investigation allowed to determine not only the increase in thermal properties of graphene oxide/rubber composites compared to the basic matrix, but also the absolute values of thermal conductivities. Additionally, the SEM analysis showed that the tested composite samples contain agglomerates of the rGO nanoparticles. The occurrence of agglomerates could affect the composite thermal properties. This was noticed in the comparatively measurements of the temperature of different composites during the heating of samples tested. The maximum enhancement of thermal conductivity obtained was about 11% compared to the basis matrix of the composites tested.

ACS Omega ◽  
2020 ◽  
Vol 5 (34) ◽  
pp. 21345-21354
Author(s):  
Esraa Hamdy ◽  
Laila Saad ◽  
Fuad Abulfotuh ◽  
Moataz Soliman ◽  
Shaker Ebrahim

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1052
Author(s):  
Wu-Jian Long ◽  
Can Lin ◽  
Xiao-Wen Tan ◽  
Jie-Lin Tao ◽  
Tao-Hua Ye ◽  
...  

Development of low thermal conductivity and high strength building materials is an emerging strategy to solve the heavy energy consumption of buildings. This study develops sustainable alkali activated materials (AAMs) for structural members from waste expanded polystyrene (EPS) beads and reduced graphene oxide (rGO) to simultaneously meet the thermal insulation and mechanical requirements of building energy conservation. It was found that the thermal conductivity of AAMs with 80 vol.% EPS and 0.04 wt.% rGO (E8–G4) decreased by 74% compared to the AAMs without EPS and rGO (E0). The 28-day compressive and flexural strengths of E8–G4 increased by 29.8% and 26.5% with the addition of 80 vol.% EPS and 0.04 wt.% rGO, compared to the sample with 80 vol.% EPS without rGO (E8). In terms of compressive strength, thermal conductivity, and cost, the efficiency index of E8–G4 was higher than those of other materials. A building model made from AAMs was designed using building information modeling (BIM) tools to simulate energy consumption, and 31.78% of total energy consumption (including heating and cooling) was saved in the building operation period in Harbin City, China. Hence, AAMs made of waste EPS beads and rGO can realize the structural and functional integrated application in the future.


Materials ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 38 ◽  
Author(s):  
Xiaofen Yu ◽  
Qibai Wu ◽  
Haiyan Zhang ◽  
Guoxun Zeng ◽  
Wenwu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document