scholarly journals Branch water uptake and redistribution in two conifers at the alpine treeline

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adriano Losso ◽  
Andreas Bär ◽  
Lucrezia Unterholzner ◽  
Michael Bahn ◽  
Stefan Mayr

AbstractDuring winter, conifers at the alpine treeline suffer dramatic losses of hydraulic conductivity, which are successfully recovered during late winter. Previous studies indicated branch water uptake to support hydraulic recovery. We analyzed water absorption and redistribution in Picea abies and Larix decidua growing at the treeline by in situ exposure of branches to δ2H-labelled water. Both species suffered high winter embolism rates (> 40–60% loss of conductivity) and recovered in late winter (< 20%). Isotopic analysis showed water to be absorbed over branches and redistributed within the crown during late winter. Labelled water was redistributed over 425 ± 5 cm within the axes system and shifted to the trunk, lower and higher branches (tree height 330 ± 40 cm). This demonstrated relevant branch water uptake and re-distribution in treeline conifers. The extent of water absorption and re-distribution was species-specific, with L. decidua showing higher rates. In natura, melting snow might be the prime source for absorbed and redistributed water, enabling embolism repair and restoration of water reservoirs prior to the vegetation period. Pronounced water uptake in the deciduous L. decidua indicated bark to participate in the process of water absorption.

2020 ◽  
Author(s):  
Christiane Werner

&lt;p&gt;Terrestrial vegetation is a main driver of ecosystem water fluxes, as plants mediate the water fluxes within the soil-vegetation-atmosphere continuum. Stable isotopologues of water are efficient tracer to follow the water transfer in soils, uptake by plants, transport in stems and release into the atmosphere through stomata. The development of in-situ methods coupled to isotope spectroscopy does now enable real-time in-situ water vapour isotopologue measurements revealing high spatial and temporal dynamics, such as adaptations in root water uptake depths (within hours to days) or the impact of transpirational fluxes on atmospheric moisture.&lt;/p&gt;&lt;p&gt;Examples will be given how isotopes can be used to inform the complex interplay between plant ecophysiological adaptations and hydrological processes. For example, root water uptake is not solely driven by soil water availability but has to be understood in the context of species-specific regulation of active zones in their rooting system determining the conductivity between soil and roots regulating uptake depths. The latter has also to be evaluated in context of the nutrient demand and the spatial nutrient availability. Similarly, plant water transport and losses are a fined tuned interplay between species-specific structural and functional adaptations and atmospheric processes.&lt;/p&gt;&lt;p&gt;Finally, first data of a large-scale ecosystem labelling experiment at the Biosphere 2 tropical rainforest of the B2 Wald, Atmosphere, and Live Dynamics (B2WALD) will be presented.&lt;/p&gt;


Author(s):  
Natalie Orlowski ◽  
Stefan Seeger ◽  
David Mennekes ◽  
Hugo de Boer ◽  
Markus Weiler ◽  
...  

&lt;p&gt;Water isotope tracing techniques in combination with laser-based isotopic analyses have advanced our understanding of plant water uptake patterns providing opportunities to carry out observational studies at high spatio-temporal resolution. Studying these highly dynamic processes at the interface between soils and trees can be challenging under natural field conditions, as available water resources are difficult to control. On the other hand, the results of small pot experiments in the greenhouse using tree seedlings are often difficult to transfer to mature trees. Here, we setup a controlled outdoor large pot experiment with three different, 4-6 meter high and 20 year old trees: &lt;em&gt;Pinus pinea, Alnus &lt;span&gt;spaethii&lt;/span&gt; and Quercus suber.&lt;/em&gt; We took advantage of stable water isotope techniques by tracing plant water uptake from the root zone through the xylem via isotopically labelled irrigation water. We combined ecohydrological observations of sapflow, photosynthesis, soil moisture and temperature and soil matrix potential with high resolution measurements of water stable isotopes in soils and trees to understand how soil water is used by different tree species. We monitored the isotopic composition of soil and xylem water in high temporal resolution with in-situ isotope probes installed at different depths in the soil and different heights in the tree stem. We further compared the water isotopic composition of our in-situ monitoring setup with destructive sampling methods for soil and plant water (vapour equilibration method and cryogenic extraction).&lt;/p&gt;&lt;p&gt;Our results from the continuous monitoring showed a distinct difference in the xylem sap isotopic signature between&lt;em&gt; Quercus&lt;/em&gt; on the one hand and &lt;em&gt;Alnus&lt;/em&gt; and &lt;em&gt;Pinus&lt;/em&gt; on the other hand. This is likely due to different water use strategies of these tree species. The tree xylem isotopic signature of &lt;em&gt;Alnus&lt;/em&gt; and &lt;em&gt;Pinus&lt;/em&gt; responded to the isotopic label within one day and six days at 15 cm and 150 cm stem height, respectively. The peak isotopic signature in the tree xylem due to the label application was similar to the isotopic signature of the soil in 30 cm (for &lt;em&gt;Alnus&lt;/em&gt;) and 15&amp;#160;cm (for &lt;em&gt;Pinus&lt;/em&gt;). &lt;em&gt;Quercus&lt;/em&gt; showed a delayed and much slower increase in the xylem isotopic signature in response to the label and the highest values were significantly lower than the corresponding soil isotopic signatures. Our methodological comparison showed that the isotopic signature of the destructive samples (from both methods) had a larger spread and this spread tended to become larger with subsequent labeling. Destructive soil samples showed a wider isotopic variation than destructive xylem samples. The in-situ isotope measurements in comparison showed a relative constant small to medium spread for soil and xylem isotopic measurements. Our in-situ isotope probes therefore seem to be a potential alternative or supplement to destructive sampling offering much higher temporal resolution. The continuation of the labeling experiments in 2020 will allow us to further study tree-species specific water uptake strategies, which will become important under future climatic conditions in terms of development of adaptation strategies for sustainable forest management.&lt;/p&gt;


Author(s):  
SS Rana ◽  
MK Gupta

The present study aims to investigate the water absorption property and its effect on the mechanical properties (i.e. tensile, flexural, and impact) of bionanocomposites. The epoxy-based bionanocomposites were prepared by reinforcing the epoxy with 1, 2, 3, 4, and 5 wt% of nanocellulose using in situ polymerization method. The maximum water uptake by bionanocomposites was measured; however, the water absorption behavior was not found in accordance with Fickian’s diffusion model. In the present study, very low water absorption in the range of 0.17–0.34% was offered by bionanocomposites. The results obtained from the present experimental study suggested that there were a maximum degradation of 14.96% in tensile strength, 26.44% in flexural strength, and 55.66% in impact strength for bionanocomposites reinforced with 5 wt% of nanocellulose by water uptake.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Genome ◽  
2010 ◽  
Vol 53 (10) ◽  
pp. 769-777 ◽  
Author(s):  
Melanie Mehes-Smith ◽  
Paul Michael ◽  
Kabwe Nkongolo

Genome organization in the family Pinaceae is complex and largely unknown. The main purpose of the present study was to develop and physically map species-diagnostic and species-specific molecular markers in pine and spruce. Five RAPD (random amplified polymorphic DNA) and one ISSR (inter-simple sequence repeat) species-diagnostic or species-specific markers for Picea mariana , Picea rubens , Pinus strobus , or Pinus monticola were identified, cloned, and sequenced. In situ hybridization of these sequences to spruce and pine chromosomes showed the sequences to be present in high copy number and evenly distributed throughout the genome. The analysis of centromeric and telomeric regions revealed the absence of significant clustering of species-diagnostic and species-specific sequences in all the chromosomes of the four species studied. Both RAPD and ISSR markers showed similar patterns.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Tuffaha Fathe Salem ◽  
Seha Tirkes ◽  
Alinda Oyku Akar ◽  
Umit Tayfun

AbstractChopped jute fiber (JF) surfaces were modified using alkaline, silane and eco-grade epoxy resin. Surface characteristics of jute fibers were confirmed by FTIR and EDX analyses. JF filled polyurethane elastomer (TPU) composites were prepared via extrusion process. The effect of surface modifications of JF on mechanical, thermo-mechanical, melt-flow, water uptake and morphological properties of TPU-based eco-composites were investigated by tensile and hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test, water absorption measurements and scanning electron microscopy (SEM) techniques, respectively. Mechanical test results showed that silane and epoxy treated JF additions led to increase in tensile strength, modulus and hardness of TPU. Glass transition temperature (Tg) of TPU rose up to higher values after JF inclusions regardless of treatment type. Si-JF filled TPU exhibited the lowest water absorption among composites. Surface treated JFs displayed homogeneous dispersion into TPU and their surface were covered by TPU according to SEM micro-photographs.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.


2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.


2013 ◽  
Vol 72 (1) ◽  
pp. 1-133 ◽  
Author(s):  
Višnja Besendorfer ◽  
Jelena Mlinarec

Abstract Satellite DNAis a genomic component present in virtually all eukaryotic organisms. The turnover of highly repetitive satellite DNAis an important element in genome organization and evolution in plants. Here we study the presence, physical distribution and abundance of the satellite DNAfamily AhTR1 in Anemone. Twenty-two Anemone accessions were analyzed by PCR to assess the presence of AhTR1, while fluorescence in situ hybridization and Southern hybridization were used to determine the abundance and genomic distribution of AhTR1. The AhTR1 repeat unit was PCR-amplified only in eight phylogenetically related European Anemone taxa of the Anemone section. FISH signal with AhTR1 probe was visible only in A. hortensis and A. pavonina, showing localization of AhTR1 in the regions of interstitial heterochromatin in both species. The absence of a FISH signal in the six other taxa as well as weak signal after Southern hybridization suggest that in these species AhTR1 family appears as relict sequences. Thus, the data presented here support the »library hypothesis« for AhTR1 satellite evolution in Anemone. Similar species-specific satellite DNAprofiles in A. hortensis and A. pavonina support the treatment of A. hortensis and A. pavonina as one species, i.e. A. hortensis s.l.


Sign in / Sign up

Export Citation Format

Share Document