scholarly journals Beyond livestock carrying capacity in the Sahelian and Sudanian zones of West Africa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaber Rahimi ◽  
Edwin Haas ◽  
Rüdiger Grote ◽  
David Kraus ◽  
Andrew Smerald ◽  
...  

AbstractWe applied the process-based model, LandscapeDNDC, to estimate feed availability in the Sahelian and Sudanian agro-ecological zones of West Africa as a basis for calculating the regional Livestock Carrying Capacity (LCC). Comparison of the energy supply (S) from feed resources, including natural pasture, browse, and crop residues, with energy demand (D) of the livestock population for the period 1981–2020 allowed us to assess regional surpluses (S > D) or deficits (S < D) in feed availability. We show that in the last 40 years a large-scale shift from surplus to deficit has occurred. While during 1981–1990 only 27% of the area exceeded the LCC, it was 72% for the period 2011–2020. This was caused by a reduction in the total feed supply of ~ 8% and an increase in feed demand of ~ 37% per-decade, driven by climate change and increased livestock population, respectively. Overall, the S/D decreased from ~ 2.6 (surplus) in 1981 to ~ 0.5 (deficit) in 2019, with a north–south gradient of increasing S/D. As climate change continues and feed availability may likely further shrink, pastoralists either need to source external feed or significantly reduce livestock numbers to avoid overgrazing, land degradation, and any further conflicts for resources.

2016 ◽  
Vol 55 (2) ◽  
pp. 265-282 ◽  
Author(s):  
Azad Henareh Khalyani ◽  
William A. Gould ◽  
Eric Harmsen ◽  
Adam Terando ◽  
Maya Quinones ◽  
...  

AbstractThe potential ecological and economic effects of climate change for tropical islands were studied using output from 12 statistically downscaled general circulation models (GCMs) taking Puerto Rico as a test case. Two model selection/model averaging strategies were used: the average of all available GCMs and the average of the models that are able to reproduce the observed large-scale dynamics that control precipitation over the Caribbean. Five island-wide and multidecadal averages of daily precipitation and temperature were estimated by way of a climatology-informed interpolation of the site-specific downscaled climate model output. Annual cooling degree-days (CDD) were calculated as a proxy index for air-conditioning energy demand, and two measures of annual no-rainfall days were used as drought indices. Holdridge life zone classification was used to map the possible ecological effects of climate change. Precipitation is predicted to decline in both model ensembles, but the decrease was more severe in the “regionally consistent” models. The precipitation declines cause gradual and linear increases in drought intensity and extremes. The warming from the 1960–90 period to the 2071–99 period was 4.6°–9°C depending on the global emission scenarios and location. This warming may cause increases in CDD, and consequently increasing energy demands. Life zones may shift from wetter to drier zones with the possibility of losing most, if not all, of the subtropical rain forests and extinction risks to rain forest specialists or obligates.


2011 ◽  
Vol 33 (4) ◽  
pp. 315 ◽  
Author(s):  
Barrie Pittock

Desert/remote Australia is blessed with abundant natural energy resources from solar, geothermal and other renewable sources. If these were harnessed and connected appropriately desert/remote Australia could be not only energy self-sufficient but a net exporter. Generation of abundant, clean energy can also attract energy-intensive industries and provide local income and employment. Such co-benefits should be included in any cost-benefit analysis. Regardless of renewable energy’s contribution to reducing climate change, the world is already committed to global warming and associated climate changes. Desert/remote Australia will thus inevitably get warmer, with implications for health, energy demand and other issues, and may be subject to increased extremes such as flooding, longer dry spells, more severe storms and coastal inundation. In addition, the prospect of world demand for oil from conventional sources exceeding supply will likely lead to oil shortages, higher oil prices, and additional incentives to provide alternative energy supplies. The region is heavily reliant on diesel generators and fossil fuel-powered motor vehicles and airplanes for transport for within-region mobility, the importation of goods, the tourism industry and emergency medical services. Without adaptation, climate change and peak oil will make living in desert/remote Australia less attractive, resulting in increased difficulty of attracting and retaining skilled workers, which would constrain development. This paper focuses on the climate and energy-related impacts and potential responses. These are both a challenge and an opportunity. They could provide additional employment and income, thus helping remote communities to participate in the clean energy economy of the future and thus overcome some serious social problems. The paper attempts to review current knowledge and provoke debate on relevant investment strategies, and it teases out the questions in need of further research.


2021 ◽  
Author(s):  
Karin van der Wiel ◽  
Laurens Stoop ◽  
Bas van Zuijlen ◽  
Russel Blackport ◽  
Mechteld van den Broek ◽  
...  

&lt;p&gt;To mitigate climate change a renewable energy transition is needed. Existing power systems will need to be re-designed to balance variable renewable energy production with variable energy demand. I will describe the meteorological sensitivity of a highly-renewable European energy system based on large ensemble simulations from two global climate models. From 2&amp;#215;2000 years of simulated weather conditions, we calculated daily wind and solar energy yields and energy demand and selected events of high societal impact: extreme high energy shortfall (residual load, i.e. demand minus renewable production). High energy shortfall days are characterized by large-scale high pressure systems over central Europe, with lower than normal wind speeds and below normal temperatures, driving up energy demands. The events typically occur mid-winter, locked to the coldest months of the year. Near-stationary high pressure situations occur that cause long lasting periods of high energy shortfall. A spatial redistribution of wind turbines and solar panels cannot prevent these high-impact events, options to import renewable energy from remote locations during these events are therefore limited. Projected changes due to climate change are substantially smaller than interannual variability. Future power systems with large penetration of variable renewable energy must be designed with these events in mind.&lt;/p&gt;


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yuquan W. Zhang ◽  
Bruce A. McCarl

The challenges and opportunities facing today's agriculture within the climate change context are at least twofold: in addition to adapting to a potentially more variable climate, agriculture may also take on the addition role of mitigating GHG emissions—such as providing renewable fuels to replace fossil fuels to some extent. For the US, a large-scale GHG mitigation effort through biofuels production pursuant to the Renewable Fuel Standard (RFS2) is already unfolding. A question thus naturally arises for the RFS2-relevant US agricultural sector: will climate change make it harder to meet the volume goals set in the RFS2 mandates, considering that both climate change and RFS2 may have significant impacts on US agriculture? The agricultural component of FASOMGHG that models the land use allocation within the conterminous US agricultural sector is employed to investigate the effects of climate change (with autonomous adaptation at farm level), coupled with RFS2, on US agriculture. The analysis shows that climate change eases the burden of meeting the RFS2 mandates increasing consumer welfare while decreasing producer welfare. The results also show that climate change encourages a more diversified use of biofuel feedstocks for cellulosic ethanol production, in particular crop residues.


2015 ◽  
Vol 10 (1) ◽  
pp. 232-237
Author(s):  
Simab Qureshi ◽  
Shahima Akhter ◽  
Piyush Malaviya

The present study was conducted to understand fodder and fuel utilization pattern in village Shahdarah Sharief, Rajouri, India. The common fodder types used were green fodder, top feeds, crop residues and tree leaves. The green fodder consumption was found to be highest (16.83 kg/day/family) while top feed was least utilized (1.10 kg/day/family). The major fuel types fulfilling the energy demand of local people in study area were wood, LPG and dung cake. LPG constituted the major share of consumption (10.7x105 kcal/month) while dung cake consumption was least (3.1x105 kcal/month). The total fuel and fodder consumption in study area was 17.2x105 kcal/month and 36.65 kg/day/family, respectively. Livestock population of study area was comprised of cow, bullock, buffalo, he-buffalo, goat and sheep with highest share of buffaloes (43.38%) and lowest of he-buffaloes (4.42%).


2021 ◽  
Vol 13 (7) ◽  
pp. 3656
Author(s):  
Md Arif Hasan ◽  
Abdullah Al Mamun ◽  
Syed Masiur Rahman ◽  
Karim Malik ◽  
Md. Iqram Uddin Al Amran ◽  
...  

Even though the contribution of the aviation sector to the global economy is very notable, it also has an adverse impact on climate change. Improvements have been made in different areas (i.e., technology, sustainable aviation fuel, and design) to mitigate these adverse effects. However, the rate of improvement is small compared to the increase in the demand for air transportation. Hence, greenhouse gas emissions in the aviation sector are steadily increasing and this trend is expected to continue unless adequately addressed. In this context, this study examined the following: (i) the factors that affect the growth of aviation, (ii) trends in greenhouse gas emissions in the sector, (iii) trends in energy demand, (iv) mitigation pathways of emissions, (v) mitigation challenges for the International Civil Aviation Organization, (vi) achievements in mitigating emissions, (vii) barriers against mitigating emissions, and (viii) approaches of overcoming barriers against emissions mitigation. This study finds that continued research and development efforts targeting aircraft fuel burn efficiency are crucial in reducing greenhouse gas emissions. Although biofuels are promising for the reduction of aviation emissions, techniques to reduce NOx emissions could enhance large-scale deployment. Pragmatic market-based mechanisms, such as the Emissions Trading Scheme (ETS) and/or carbon tax must be enforced on a global scale to capitalize on a collective stakeholder effort to curb CO2 emissions. The findings of this study will help in understanding the emissions and energy consumption scenarios, which will provide a comprehensive package of mitigation pathways to overcome future emissions reduction challenges in the aviation sector.


Erdkunde ◽  
2008 ◽  
Vol 62 (2) ◽  
pp. 101-115 ◽  
Author(s):  
Heiko Paeth ◽  
Arcade Capo-Chichi ◽  
Wilfried Endlicher

2020 ◽  
Vol 12 (20) ◽  
pp. 8369
Author(s):  
Mohammad Rahimi

In this Opinion, the importance of public awareness to design solutions to mitigate climate change issues is highlighted. A large-scale acknowledgment of the climate change consequences has great potential to build social momentum. Momentum, in turn, builds motivation and demand, which can be leveraged to develop a multi-scale strategy to tackle the issue. The pursuit of public awareness is a valuable addition to the scientific approach to addressing climate change issues. The Opinion is concluded by providing strategies on how to effectively raise public awareness on climate change-related topics through an integrated, well-connected network of mavens (e.g., scientists) and connectors (e.g., social media influencers).


2021 ◽  
pp. 127300
Author(s):  
Tao Pan ◽  
Chi Zhang ◽  
Wenhui Kuang ◽  
Geping Luo ◽  
Guoming Du ◽  
...  

2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Sign in / Sign up

Export Citation Format

Share Document