scholarly journals Inheritance of gene expression throughout fruit development in chili pepper

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Escoto-Sandoval ◽  
Neftalí Ochoa-Alejo ◽  
Octavio Martínez

AbstractGene expression is the primary molecular phenotype and can be estimated in specific organs or tissues at particular times. Here we analyzed genome-wide inheritance of gene expression in fruits of chili pepper (Capsicum annuum L.) in reciprocal crosses between a domesticated and a wild accession, estimating this parameter during fruit development. We defined a general hierarchical schema to classify gene expression inheritance which can be employed for any quantitative trait. We found that inheritance of gene expression is affected by both, the time of fruit development as well as the direction of the cross, and propose that such variations could be common in many developmental processes. We conclude that classification of inheritance patterns is important to have a better understanding of the mechanisms underlying gene expression regulation, and demonstrate that sets of genes with specific inheritance pattern at particular times of fruit development are enriched in different biological processes, molecular functions and cell components. All curated data and functions for analysis and visualization are publicly available as an R package.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Escoto-Sandoval ◽  
Alan Flores-Díaz ◽  
M. Humberto Reyes-Valdés ◽  
Neftalí Ochoa-Alejo ◽  
Octavio Martínez

AbstractRNA-Seq experiments allow genome-wide estimation of relative gene expression. Estimation of gene expression at different time points generates time expression profiles of phenomena of interest, as for example fruit development. However, such profiles can be complex to analyze and interpret. We developed a methodology that transforms original RNA-Seq data from time course experiments into standardized expression profiles, which can be easily interpreted and analyzed. To exemplify this methodology we used RNA-Seq data obtained from 12 accessions of chili pepper (Capsicum annuum L.) during fruit development. All relevant data, as well as functions to perform analyses and interpretations from this experiment, were gathered into a publicly available R package: “Salsa”. Here we explain the rational of the methodology and exemplify the use of the package to obtain valuable insights into the multidimensional time expression changes that occur during chili pepper fruit development. We hope that this tool will be of interest for researchers studying fruit development in chili pepper as well as in other angiosperms.


2020 ◽  
Author(s):  
Christian Escoto-Sandoval ◽  
Alan Flores-Díaz ◽  
M. Humberto Reyes-Valdés ◽  
Neftalí Ochoa-Alejo ◽  
Octavio Martinez

Abstract Background: Open data sharing is instrumental for the advance of biological sciences. Gene expression is the primary molecular phenotype, usually estimated through RNA-Seq experiments. Large scope interpretation of RNA-Seq results is complicated by the extensive gene expression range, as well as by the diversity of biological sources and experimental treatments. Here we present “Salsa”, an auto-contained R package for extracting useful knowledge about gene expression during the development of chili pepper fruit. Methods and Results: Data from 168 RNA-Seq libraries, comprising more than 3.4 billion reads, were analyzed and curated to represent standardized expression profiles (SEPs) for all genes expressed during fruit development in 12 chili pepper accessions. Accessions have representatives of domesticated varieties, wild ancestors and crosses, covering a broad spectrum of genotypes. Data are organized in a relational way, and functions allow data mining from the level of single genes up to whole genomes, grouping profiles by different criteria. Those include any combination of expression model, accession, protein description and gene ontology (GO) term, among others. Also, GO enrichment analysis can be performed over any set of genes. Conclusions: “Salsa” opens endless possibilities for mining the transcriptome of chili pepper during fruit development.


2021 ◽  
Author(s):  
Dennis A Sun ◽  
Nipam H Patel

AbstractEmerging research organisms enable the study of biology that cannot be addressed using classical “model” organisms. The development of novel data resources can accelerate research in such animals. Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-Seq, an improved form of the Assay for Transposase-Accessible Chromatin coupled with next-generation sequencing (ATAC-Seq), to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis, and limb development. In addition, we use short- and long-read RNA-Seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We leverage a variety of bioinformatic tools to discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions, and correlate gene expression with accessibility. Using a Minos transposase reporter system, we demonstrate the potential to identify novel regulatory elements using this approach, including distal regulatory elements. This work provides a platform for the identification of novel developmental regulatory elements in Parhyale, and offers a framework for performing such experiments in other emerging research organisms.Primary Findings-Omni-ATAC-Seq identifies cis-regulatory elements genome-wide during crustacean embryogenesis-Combined short- and long-read RNA-Seq improves the Parhyale genome annotation-ImpulseDE2 analysis identifies dynamically regulated candidate regulatory elements-NucleoATAC and HINT-ATAC enable inference of nucleosome occupancy and transcription factor binding-Fuzzy clustering reveals peaks with distinct accessibility and chromatin dynamics-Integration of accessibility and gene expression reveals possible enhancers and repressors-Omni-ATAC can identify known and novel regulatory elements


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Guo-qiang Xu ◽  
Li-hong Li ◽  
Jia-ning Wei ◽  
Lan-fei Xiao ◽  
Xiao-tang Wang ◽  
...  

Abstract MicroRNAs are known to play essential role in the gene expression regulation in cancer. In our research, next-generation sequencing technology was applied to explore the abnormal miRNA expression of oral squamous cell carcinoma (OSCC) in Chinese hamster. A total of 3 novel miRNAs (Novel-117, Novel-118, and Novel-135) and 11 known miRNAs (crg-miR-130b-3p, crg-miR-142-5p, crg-miR-21-3p, crg-miR-21-5p, crg-miR-542-3p, crg-miR-486-3p, crg-miR-499-5p, crg-miR-504, crg-miR-34c-5p, crg-miR-34b-5p and crg-miR-34c-3p) were identified. We conducted functional analysis, finding that 340 biological processes, 47 cell components, 46 molecular functions were associated with OSCC. Meanwhile the gene expression of Caspase-9, Caspase-3, Bax, and Bcl-2 were determined by qRT-PCR and the protein expression of PTEN and p-AKT by immunohistochemistry. Our research proposed further insights to the profiles of these miRNAs and provided a basis for investigating the regulatory mechanisms involved in oral cancer research.


2019 ◽  
Vol 17 (04) ◽  
pp. 1950024 ◽  
Author(s):  
Tinghua Huang ◽  
Xiali Huang ◽  
Bomei Shi ◽  
Min Yao

Understanding how genes are expressed and regulated in different biological processes are fundamental and challenging issues. Considerable progress has been made in studying the relationship between the expression and regulation of human genes. However, it is difficult to use these resources productively to analyze gene expression data. GEREDB ( www.thua45.cn/geredb ) has been developed to facilitate analyses that will provide insights into the regulation of genes that govern specific biological responses. GEREDB is a publicly available, manually curated biological database that stores the data regarding relationships between expression and regulation of human genes. To date, more than 39,000 Links have been contextually annotated by reviewing more than 53,000 abstracts. GEREDB can be searched using the official NCBI gene symbol as a query, and it can be downloaded along with the GEREA software package. GEREDB has the ability to analyze user-supplied gene expression data in a causal analysis oriented manner using the GEREA bioinformatics tool.


2020 ◽  
Vol 48 (5) ◽  
pp. 2544-2563 ◽  
Author(s):  
Pilar Menendez-Gil ◽  
Carlos J Caballero ◽  
Arancha Catalan-Moreno ◽  
Naiara Irurzun ◽  
Inigo Barrio-Hernandez ◽  
...  

Abstract The evolution of gene expression regulation has contributed to species differentiation. The 3′ untranslated regions (3′UTRs) of mRNAs include regulatory elements that modulate gene expression; however, our knowledge of their implications in the divergence of bacterial species is currently limited. In this study, we performed genome-wide comparative analyses of mRNAs encoding orthologous proteins from the genus Staphylococcus and found that mRNA conservation was lost mostly downstream of the coding sequence (CDS), indicating the presence of high sequence diversity in the 3′UTRs of orthologous genes. Transcriptomic mapping of different staphylococcal species confirmed that 3′UTRs were also variable in length. We constructed chimeric mRNAs carrying the 3′UTR of orthologous genes and demonstrated that 3′UTR sequence variations affect protein production. This suggested that species-specific functional 3′UTRs might be specifically selected during evolution. 3′UTR variations may occur through different processes, including gene rearrangements, local nucleotide changes, and the transposition of insertion sequences. By extending the conservation analyses to specific 3′UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis mRNAs, we showed that 3′UTR variability is widespread in bacteria. In summary, our work unveils an evolutionary bias within 3′UTRs that results in species-specific non-coding sequences that may contribute to bacterial diversity.


2018 ◽  
Vol 35 (16) ◽  
pp. 2718-2723 ◽  
Author(s):  
Tamir Tuller ◽  
Alon Diament ◽  
Avital Yahalom ◽  
Assaf Zemach ◽  
Shimshi Atar ◽  
...  

Abstract Motivation The COP9 signalosome is a highly conserved multi-protein complex consisting of eight subunits, which influences key developmental pathways through its regulation of protein stability and transcription. In Arabidopsis thaliana, mutations in the COP9 signalosome exhibit a number of diverse pleiotropic phenotypes. Total or partial loss of COP9 signalosome function in Arabidopsis leads to misregulation of a number of genes involved in DNA methylation, suggesting that part of the pleiotropic phenotype is due to global effects on DNA methylation. Results We determined and analyzed the methylomes and transcriptomes of both partial- and total-loss-of-function Arabidopsis mutants of the COP9 signalosome. Our results support the hypothesis that the COP9 signalosome has a global genome-wide effect on methylation and that this effect is at least partially encoded in the DNA. Our analyses suggest that COP9 signalosome-dependent methylation is related to gene expression regulation in various ways. Differentially methylated regions tend to be closer in the 3D conformation of the genome to differentially expressed genes. These results suggest that the COP9 signalosome has a more comprehensive effect on gene expression than thought before, and this is partially related to regulation of methylation. The high level of COP9 signalosome conservation among eukaryotes may also suggest that COP9 signalosome regulates methylation not only in plants but also in other eukaryotes, including humans. Supplementary information Supplementary data are available at Bioinformatics online.


Genetics ◽  
2020 ◽  
Vol 215 (1) ◽  
pp. 253-266 ◽  
Author(s):  
Nicole E. Soltis ◽  
Celine Caseys ◽  
Wei Zhang ◽  
Jason A. Corwin ◽  
Susanna Atwell ◽  
...  

In plant–pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host–pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms’ transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thaliana–Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen.


2022 ◽  
Author(s):  
Michael Batie ◽  
Julianty Frost ◽  
Dilem Shakir ◽  
Sonia Rocha

Reduced oxygen availability (hypoxia) can act as a signalling cue in physiological processes such as development, but also in pathological conditions such as cancer or ischaemic disease. As such, understanding how cells and organisms respond to hypoxia is of great importance. The family of transcription factors called Hypoxia Inducible Factors (HIFs) coordinate a transcriptional programme required for survival and adaptation to hypoxia. The effects of hypoxia and HIF on the chromatin accessibility landscape are still unclear. Here, using genome wide mapping of chromatin accessibility via ATAC-seq, we find hypoxia induces loci specific changes in chromatin accessibility enriched at hypoxia transcriptionally responsive genes. These changes are predominantly HIF dependent, reversible upon reoxygenation and partially mimicked by chemical HIF stabilisation independent of molecular dioxygenase inhibition. This work demonstrates that indeed, HIF stabilisation is necessary and sufficient to alter chromatin accessibility in hypoxia, with implications for our understanding of gene expression regulation by hypoxia and HIF.


Genetics ◽  
2020 ◽  
Vol 216 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Sanket Nagarkar ◽  
Ruchi Wasnik ◽  
Pravallika Govada ◽  
Stephen Cohen ◽  
L. S. Shashidhara

Promoter proximal pausing (PPP) of RNA polymerase II has emerged as a crucial rate-limiting step in the regulation of gene expression. Regulation of PPP is brought about by complexes 7SK snRNP, P-TEFb (Cdk9/cycT), and the negative elongation factor (NELF), which are highly conserved from Drosophila to humans. Here, we show that RNAi-mediated depletion of bin3 or Hexim of the 7SK snRNP complex or depletion of individual components of the NELF complex enhances Yki-driven growth, leading to neoplastic transformation of Drosophila wing imaginal discs. We also show that increased CDK9 expression cooperates with Yki in driving neoplastic growth. Interestingly, overexpression of CDK9 on its own or in the background of depletion of one of the components of 7SK snRNP or the NELF complex necessarily, and specifically, needed Yki overexpression to cause tumorous growth. Genome-wide gene expression analyses suggested that deregulation of protein homeostasis is associated with tumorous growth of wing imaginal discs. As both Fat/Hippo/Yki pathway and PPP are highly conserved, our observations may provide insights into mechanisms of oncogenic function of YAP—the ortholog of Yki in humans.


Sign in / Sign up

Export Citation Format

Share Document