scholarly journals Seasonal and spatial patterns of eukaryotic phytoplankton communities in an urban river based on marker gene

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Yang ◽  
Junping Lv ◽  
Qi Liu ◽  
Fangru Nan ◽  
Bo Li ◽  
...  

AbstractThe seasonal and spatial eukaryotic phytoplankton composition in the Fenhe River was investigated based on the 18S rDNA V4 region. The relationship between phytoplankton functional groups and environmental factors was explored to effectively capture the responses of these taxa to environmental gradients and their effects on ecosystem function. Our results indicated that the Chlorophyta and Bacillariophyta had higher relative abundance than other taxa, and their diversity and richness indices in spring were higher than those in other seasons. The linear discriminant analysis effect size (LEfSe) analyses detected that the potential seasonal biomarkers included Desmodesmus, Cyclotella, Pseudoschroederia, Discostella, Scenedesmus, Monoraphidium, and Nannochloropsis; the spatial biomarkers included Amphora, Neochloris, Hindakia, Pseudomuriella, Coccomyxa, Chloroidium, Scherffelia, Chromochloris, and Scotinosphaera. The systemic evolution and distribution characteristics of the first 50 representative sequences showed that the dominant genus included Desmodesmus in spring, Pseudopediastrum in summer, Mychonastes in autumn, and Monoraphidium in winter. Main seasonal variation of phytoplankton functional groups was as follows: spring (J + F + C + X1) → summer (J + F + X1 + X2) → autumn (J + F + X1 + C) → winter (X1 + J + B + X2). Pearson correlation, redundancy analysis, and variance partitioning analysis showed temperature and phosphate were the determining factors causing the changes of phytoplankton functional groups and community composition in the Fenhe River.

2019 ◽  
Vol 12 (6) ◽  
pp. 1047-1058 ◽  
Author(s):  
Hélio Menegat ◽  
Divino Vicente Silvério ◽  
Henrique A Mews ◽  
Guarino R Colli ◽  
Ana Clara Abadia ◽  
...  

Abstract Aims Different plant functional groups display diverging responses to the same environmental gradients. Here, we assess the effects of environmental and spatial predictors on species turnover of three functional groups of Brazilian savannas (Cerrado) plants—trees, palms and lianas—across the transition zone between the Cerrado and Amazon biomes in central Brazil. Methods We used edaphic, climatic and plant composition data from nine one-hectare plots to assess the effects of the environment and space on species turnover using a Redundancy Analysis and Generalized Dissimilarity Modeling (GDM), associated with variance partitioning. Important Findings We recorded 167 tree species, 5 palms and 4 liana species. Environmental variation was most important in explaining species turnover, relative to geographic distance, but the best predictors differed between functional groups: geographic distance and silt for lianas; silt for palms; geographic distance, temperature and elevation for trees. Geographic distances alone exerted little influence over species turnover for the three functional groups. The pure environmental variation explained most of the liana and palm turnover, while tree turnover was largely explained by the shared spatial and environmental contribution. The effects of geographic distance upon species turnover leveled off at about 300 km for trees, and 200 km for lianas, whereas they were unimportant for palm species turnover. Our results indicate that environmental factors that determine floristic composition and species turnover differ substantially between plant functional groups in savannas. Therefore, we recommend that studies that aim to investigate the role of environmental conditions in determining plant species turnover should examine plant functional groups separately.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1167 ◽  
Author(s):  
Lingai Yao ◽  
Xuemin Zhao ◽  
Guang-Jie Zhou ◽  
Rongchang Liang ◽  
Ting Gou ◽  
...  

Freshwater phytoplankton communities can be classified into a variety of functional groups that are based on physiological, morphological, and ecological characteristics. This classification method was used to study the temporal and spatial changes in the phytoplankton communities of Gaozhou Reservoir, which is a large municipal water source in South China. Between January 2015 and December 2017, a total of 155 taxa of phytoplankton that belong to seven phyla were identified. The phytoplankton communities were classified into 28 functional groups, nine of which were considered to be representative functional groups (relative biomass > 10%). Phytoplankton species richness was greater in the summer and autumn than in the winter and spring; cyanobacterial blooms occurred in the spring. The seasonal succession of phytoplankton functional groups was characterized by the occurrence of functional groups P (Staurastrum sp. and Closterium acerosum) and Y (Cryptomonas ovata and Cryptomonas erosa) in the winter and spring, and functional groups NA (Cosmarium sp. and Staurodesmus sp.) and P (Staurastrum sp. and Closterium acerosum) in the summer and autumn. The temperature, nitrogen, and phosphorus levels were the main factors driving seasonal changes in the phytoplankton communities of Gaozhou Reservoir. The functional group M (Microcystis aeruginosa) dominated the community during the cyanobacterial blooms in spring 2016, with the maximum algal cell density of 3.12 × 108 cells L−1. Relatively low temperature (20.8 °C), high concentrations of phosphorus (0.080–0.110 mg L−1), suitable hydrological and hydrodynamic conditions (e.g., relatively long retention time), and relatively closed geographic location in the reservoir were the key factors that stimulated the cyanobacterial blooms during the early stages.


2021 ◽  
Vol 3 ◽  
Author(s):  
Jaclyn E. Smith ◽  
Jennifer L. Wolny ◽  
Matthew D. Stocker ◽  
Robert L. Hill ◽  
Yakov A. Pachepsky

Phytoplankton functional groups and their influence on water quality have been studied in various types of water bodies but have yet to be studied in agricultural irrigation ponds. Freshwater sources (e.g., lakes, rivers, and reservoirs) have been previously shown to exhibit high spatial and temporal variability in phytoplankton populations. Improvements in the monitoring of phytoplankton populations may be achieved if patterns of stable spatial variability can be found in the phytoplankton populations through time. The objective of this work was to determine if temporally stable spatial patterns in phytoplankton communities could be detected in agricultural irrigation ponds using a functional group approach. The study was performed at two working agricultural irrigation ponds located in Maryland, USA over two summer sampling campaigns in 2017 and 2018. Concentrations of four phytoplankton groups, along with sensor-based and fluorometer based water quality parameters were measured. Temporal stability was assessed using mean relative differences between measurements in each location and averaged measurements across ponds on each sampling date. Temporally stable spatial patterns of three phytoplankton functional groups were found for both ponds over the two sampling seasons. Both ponds had locations where specific phytoplankton functional group concentrations were consistently higher or lower than the pond's average concentration for each sampling date. Zones of consistently higher or lower than average concentrations were associated with flow conditions, pond morphology, and human activities. The existence of temporally stable patterns of phytoplankton functional group concentrations can affect the outcome of a water quality assessment and should be considered in water quality monitoring designs.


2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Maria da Conceição de Souza ◽  
Luciane Oliveira Crossetti ◽  
Vanessa Becker

Abstract Aim Our study aimed to evaluate changes in the phytoplankton functional groups brought about by increases in temperature and nutrients predicted by the Intergovernmental Panel on Climate Change (IPCC) scenario for semi-arid regions. Methods Two experiments were performed, one in the rainy season and another in the dry season. The nutrient enrichment was based on the annual mean values (August 2012-August 2013) of soluble reactive phosphorus and nitrate verified in the reservoir. The microcosms were exposed to two different temperatures, the five-year average of air temperature in the reservoir (control) and 4°C above the control temperature (warming). The experiment was conducted over 12 days; every three days water samples of approximately 60 mL in volume were taken from the reservoir for chemical and phytoplankton analysis. All species were classified by Reynolds Functional Groups (RFG). Results The functional groups H1, X1, LO and S1 were the most representative in both seasons (rainy and dry). Our results showed that bloom-forming cyanobacteria, in particular the species of functional groups H1 and M, commonly reported in reservoirs in semi-arid regions of Brazil, were not significantly benefited by the warming and nutrient enrichment. The recruitment of other blue-green species, as well as diatoms and green algae, could be observed. Conclusions The effects of warming and/or nutritional enrichment can change the structure of the phytoplankton community. However, as not expected as the pessimist scenario, in our study the bloom-forming phytoplankton functional groups did not show changes in relative biomass. Instead, the recruitment of diatoms and green algae currently found in enriched environments was verified, specifically in the rainy period, when nutrient dilution typically occurs.


Hydrobiologia ◽  
2016 ◽  
Vol 788 (1) ◽  
pp. 169-191 ◽  
Author(s):  
Marija Gligora Udovič ◽  
Aleksandra Cvetkoska ◽  
Petar Žutinić ◽  
Sunčica Bosak ◽  
Igor Stanković ◽  
...  

2017 ◽  
Vol 77 (1) ◽  
Author(s):  
Svein Birger Wærvågen ◽  
Tom Andersen

Lake Gjerstadvann is a dimictic, oligotrophic, slightly acidified boreal lake in southern Norway (northwest Europe). The planktonic rotifer community of this lake was studied quantitatively during one year in order to investigate the impacts of the local environment and biotic interactions on seasonal succession and habitat selection. Pure suspension feeders (mainly Keratella spp., Conochilus spp., and Kellicottia longispina) together with raptorial graspers or specialised feeders (mainly Polyarthra spp. and Collotheca spp.) dominated the rotifer community over prolonged periods, whereas carnivorous/omnivorous species (mainly Asplanchna priodonta) were extremely uncommon. Low bicarbonate buffering capacity resulted in a distinctive seasonal oscillating pH between 5.0 and 5.6, defining a special acid-transition lake category. The pH values were highest in the productive period during summer, and lowest during ice break-up coinciding with the peak reactive aluminium concentrations of 250-300 mg L-1. As in typical Norwegian boreal perch lakes, the most abundant cladoceran was Bosmina longispina due to perch predation on the genus Daphnia. Rotifer community structure was significantly related to temperature and oxygen (P=0.001 and P=0.022), illustrating the important effects of the seasonal cycle and vertical density stratification. The most significant competition indicator species were B. longispina and Eudiaptomus gracilis (both with P=0.001). A variance partitioning indicated that 14% of the total community composition variance could only be explained by biotic interactions, while 19% of the variance could be attributed to environmental gradients. Of the variance, 23% could not be resolved between biotic interactions and environmental gradients, while a residual of 44% was not explainable by any of the variables. Acid conditions alone cannot account for all the observed changes in the rotifer community of this lake with low humic content, since resource limitation and food competition are also important factors shaping rotifer population dynamics and the community structure.


2009 ◽  
Vol 69 (1) ◽  
pp. 75-85 ◽  
Author(s):  
LM. Rangel ◽  
LHS. Silva ◽  
MS. Arcifa ◽  
A. Perticarrari

Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo) were investigated in two climatological periods: July 2001 (cool-dry season) and March 2002 (warm-rainy season). Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (Lm, Y, W1 and W2) and functional groups typical of shallow eutrophic environments (J, X1 and Sn) were important throughout the study period. The lake's thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.


2011 ◽  
Vol 10 (65) ◽  
pp. 14485-14492 ◽  
Author(s):  
Liao Bing Hua ◽  
Ding Sheng Yan ◽  
Liang Guo Fu ◽  
Guo Yi Li ◽  
Tian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document