scholarly journals Nasopharyngeal microbiota in hospitalized children with Bordetella pertussis and Rhinovirus infection

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. E. Tozzi ◽  
F. Del Chierico ◽  
E. Pandolfi ◽  
S. Reddel ◽  
F. Gesualdo ◽  
...  

AbstractDespite great advances in describing Bordetella pertussis infection, the role of the host microbiota in pertussis pathogenesis remains unexplored. Indeed, the microbiota plays important role in defending against bacterial and viral respiratory infections. We investigated the nasopharyngeal microbiota in infants infected by B. pertussis (Bp), Rhinovirus (Rv) and simultaneously by both infectious agents (Bp + Rv). We demonstrated a specific nasopharyngeal microbiome profiles for Bp group, compared to Rv and Bp + Rv groups, and a reduction of microbial richness during coinfection compared to the single infections. The comparison amongst the three groups showed the increase of Alcaligenaceae and Achromobacter in Bp and Moraxellaceae and Moraxella in Rv group. Furthermore, correlation analysis between patients’ features and nasopharyngeal microbiota profile highlighted a link between delivery and feeding modality, antibiotic administration and B. pertussis infection. A model classification demonstrated a microbiota fingerprinting specific of Bp and Rv infections. In conclusion, external factors since the first moments of life contribute to the alteration of nasopharyngeal microbiota, indeed increasing the susceptibility of the host to the pathogens' infections. When the infection is triggered, the presence of infectious agents modifies the microbiota favoring the overgrowth of commensal bacteria that turn in pathobionts, hence contributing to the disease severity.

Author(s):  
Michael P. Wakeman

The elderly are a growing proportion of the global population. They are more susceptible to non-communicable diseases and respiratory viral diseases like influenza and covid19, which may lead to increased levels of morbidity and mortality than those of a younger generation. It is also reported that co-morbidities, especially diabetes, hypertension and coronary heart disease contribute significantly to the prognosis with these types of infections. That the immune system operates in a less efficient way as an individual ages, is now well understood and likely contributes significantly to this situation. The role of certain micronutrients in maintaining a healthy immune system is well recognised and demonstrated to play an important role both in preventing and controlling infection. However, for a number of reasons many elderly individuals have a less than optimal intake of many of the micronutrients that support the immune system. This review examines the contributory roles an aging immune system, suboptimal intake of micronutrients, comorbidities and the impact of the intake of medications typically used to treat them can play in the outcome of viral respiratory infections. It identifies the need for supplementation, especially in the elderly to support the immune system.


2006 ◽  
Vol 44 (8) ◽  
pp. 2739-2742 ◽  
Author(s):  
J. Ordas ◽  
J. A. Boga ◽  
M. Alvarez-Arguelles ◽  
L. Villa ◽  
C. Rodriguez-Dehli ◽  
...  

2016 ◽  
Vol 88 (11) ◽  
pp. 1874-1881 ◽  
Author(s):  
Mayda Finianos ◽  
Randi Issa ◽  
Martin D. Curran ◽  
Claude Afif ◽  
Maryam Rajab ◽  
...  

1963 ◽  
Vol 47 (5) ◽  
pp. 1171-1184 ◽  
Author(s):  
Lewis B. Lefkowitz ◽  
George Gee Jackson ◽  
Harry F. Dowling

The Lancet ◽  
2010 ◽  
Vol 376 (9743) ◽  
pp. 826-834 ◽  
Author(s):  
William W Busse ◽  
Robert F Lemanske ◽  
James E Gern

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4891
Author(s):  
Roghayeh Shahbazi ◽  
Hamed Yasavoli-Sharahi ◽  
Nawal Alsadi ◽  
Nafissa Ismail ◽  
Chantal Matar

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


2020 ◽  
Vol 13 (9) ◽  
pp. 236 ◽  
Author(s):  
Alexander Panossian ◽  
Thomas Brendler

The aim of our review is to demonstrate the potential of herbal preparations, specifically adaptogens for prevention and treatment of respiratory infections, as well as convalescence, specifically through supporting a challenged immune system, increasing resistance to viral infection, inhibiting severe inflammatory progression, and driving effective recovery. The evidence from pre-clinical and clinical studies with Andrographis paniculata, Eleutherococcus senticosus, Glycyrrhiza spp., Panax spp., Rhodiola rosea, Schisandra chinensis, Withania somnifera, their combination products and melatonin suggests that adaptogens can be useful in prophylaxis and treatment of viral infections at all stages of progression of inflammation as well as in aiding recovery of the organism by (i) modulating innate and adaptive immunity, (ii) anti-inflammatory activity, (iii) detoxification and repair of oxidative stress-induced damage in compromised cells, (iv) direct antiviral effects of inhibiting viral docking or replication, and (v) improving quality of life during convalescence.


Sign in / Sign up

Export Citation Format

Share Document