scholarly journals Identifying gene expression profiles associated with neurogenesis and inflammation in the human subependymal zone from development through aging

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Mainá Bitar ◽  
Christin Weissleder ◽  
Hayley F. North ◽  
Misaki S. Clearwater ◽  
Oressia Zalucki ◽  
...  

AbstractThe generation of new neurons within the mammalian forebrain continues throughout life within two main neurogenic niches, the subgranular zone (SGZ) of the hippocampal dentate gyrus, and the subependymal zone (SEZ) lining the lateral ventricles. Though the SEZ is the largest neurogenic niche in the adult human forebrain, our understanding of the mechanisms regulating neurogenesis from development through aging within this region remains limited. This is especially pertinent given that neurogenesis declines dramatically over the postnatal lifespan. Here, we performed transcriptomic profiling on the SEZ from human post-mortem tissue from eight different life-stages ranging from neonates (average age ~ 2 months old) to aged adults (average age ~ 86 years old). We identified transcripts with concomitant profiles across these decades of life and focused on three of the most distinct profiles, namely (1) genes whose expression declined sharply after birth, (2) genes whose expression increased steadily with age, and (3) genes whose expression increased sharply in old age in the SEZ. Critically, these profiles identified neuroinflammation as becoming more prevalent with advancing age within the SEZ and occurring with time courses, one gradual (starting in mid-life) and one sharper (starting in old age).

Author(s):  
Astrid M. Alsema ◽  
Qiong Jiang ◽  
Laura Kracht ◽  
Emma Gerrits ◽  
Marissa L. Dubbelaar ◽  
...  

AbstractMicroglia are the tissue-resident macrophages of the central nervous system (CNS). Recent studies based on bulk and single-cell RNA sequencing in mice indicate high relevance of microglia with respect to risk genes and neuro-inflammation in Alzheimer’s disease. Here, we investigated microglia transcriptomes at bulk and single cell level in non-demented elderly and AD donors using acute human post-mortem cortical brain samples. We identified 9 human microglial subpopulations with heterogeneity in gene expression. Notably, gene expression profiles and subcluster composition of microglia did not differ between AD donors and non-demented elderly in bulk RNA sequencing nor in single-cell sequencing.


2009 ◽  
Vol 07 (02) ◽  
pp. 339-356 ◽  
Author(s):  
SATISH TADEPALLI ◽  
NAREN RAMAKRISHNAN ◽  
LAYNE T. WATSON ◽  
BUD MISHRA ◽  
RICHARD F. HELM

We present a new approach to segmenting multiple time series by analyzing the dynamics of cluster formation and rearrangement around putative segment boundaries. This approach finds application in distilling large numbers of gene expression profiles into temporal relationships underlying biological processes. By directly minimizing information-theoretic measures of segmentation quality derived from Kullback-Leibler (KL) divergences, our formulation reveals clusters of genes along with a segmentation such that clusters show concerted behavior within segments but exhibit significant regrouping across segmentation boundaries. The results of the segmentation algorithm can be summarized as Gantt charts revealing temporal dependencies in the ordering of key biological processes. Applications to the yeast metabolic cycle and the yeast cell cycle are described.


Genome ◽  
2013 ◽  
Vol 56 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Jingjing Jiang ◽  
Jianxia Jiang ◽  
Lin Qiu ◽  
Ying Miao ◽  
Lina Yao ◽  
...  

Fertilization is controlled by a complex gene regulatory network. To study the fertilization mechanism, we determined time courses of the four developmental stages of fertilization in Chinese cabbage pak-choi (Brassica campestris subsp. chinensis) by cytological observation. We then used the Arabidopsis ATH1 microarray to characterize the gene expression profiles of pollinated and unpollinated pistils in B. campestris subsp. chinensis. The result showed 44 up-regulated genes and 33 down-regulated genes in pollinated pistils compared with unpollinated pistils. Gene ontology analysis identified 20% of the up-regulated genes as belonging to the category of cell wall metabolism. We compared the up-regulated genes in pollinated pistils with previously identified pollen development related genes. Ten genes were found to be in common, which were termed as continuously expressed genes, in the two processes in the present article. Their expression patterns during pollen development and fertilization processes were then verified by RT–PCR. One of the continuously expressed genes, the homologous gene of At3g01270 in B. campestris subsp. chinensis, was confirmed as specifically expressed in microspores and pollinated pistils by using in situ hybridization. The potential biological functions of the other continuously expressed genes were also discussed.


2012 ◽  
Vol 137 (2) ◽  
pp. 80-85 ◽  
Author(s):  
Huiying Li ◽  
Hongji Luo ◽  
Deying Li ◽  
Tao Hu ◽  
Jinmin Fu

Lead pollution is an important issue in the world. Perennial ryegrass (Lolium perenne), as one of the widely used turfgrass and forage species, has a potential for bioremediation. The objective of this study was to investigate how antioxidant enzymes and their gene transcripts respond to Pb stress in perennial ryegrass. Ryegrass seedlings were subjected to 0, 0.5, and 3.2 mm of Pb(NO3)2 for 7 days in a hydroponic system maintained in a greenhouse. Both root and shoot growths were inhibited by Pb compared with the control. However, contents of chlorophyll (Chl) a and total Chl were unaffected by Pb treatment. Results from this study showed a substantial increase of malondialdehyde (MDA) content in leaf tissues when perennial ryegrass was exposed to Pb at 3.2 mm. The MDA content from plants in the 0.5 mm Pb treatment was lower than the control, indicating that an effective defense mechanism existed. Circumstantial evidence came also from the content of soluble protein in 0.5 mm Pb treatment, which was not different from the control. Furthermore, the activity of catalase (CAT) increased at 0.5 mm Pb compared with the control, indicating that CAT might play an important role in scavenging reactive oxygen species (ROS). The expression profiles of eight genes encoding antioxidative enzymes were upregulated within 24 hours of Pb treatment. In conclusion, antioxidant enzymes responded to Pb at an early stage of exposure and their gene expression profiles provided more details in time courses of the activation of those systems.


2004 ◽  
Vol 171 (4S) ◽  
pp. 349-350
Author(s):  
Gaelle Fromont ◽  
Michel Vidaud ◽  
Alain Latil ◽  
Guy Vallancien ◽  
Pierre Validire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document