scholarly journals Performance-based comparison of Yamada–Ota and Hamilton–Crosser hybrid nanofluid flow models with magnetic dipole impact past a stretched surface

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hina Gul ◽  
Muhammad Ramzan ◽  
Kottakkaran Sooppy Nisar ◽  
Roshan Noor Mohamed ◽  
Hassan Ali S. Ghazwani

AbstractThe nanofluid flows play a vital role in many engineering processes owing to their notable industrial usage and excessive heat transfer abilities. Lately, an advanced form of nanofluids namely “hybrid nanofluids” has swapped the usual nanofluid flows to further augment the heat transfer capabilities. The objective of this envisaged model is to compare the performance of two renowned hybrid nanofluid models namely Hamilton–Crosser and Yamada–Ota. The hybrid nanoliquid (TiO2-SiC/DO) flow model is comprised of Titanium oxide (TiO2) and Silicon carbide (SiC) nanoparticles submerged into Diathermic oil (DO). The subject flow is considered over a stretched surface and is influenced by the magnetic dipole. The uniqueness of the fluid model is augmented by considering the modified Fourier law instead of the traditional Fourier law and slip conditions at the boundary. By applying the suitable similarity transformations, the system of ordinary differential equations obtained from the leading partial differential equations is handled by the MATLAB solver bvp4c package to determine the numerical solution. It is divulged that the Yamada–Ota model performs considerably better than the Hamilton–Crosser flow model as far as heat transfer capabilities are concerned. Further, the velocity reduces on increasing hydrodynamic interaction and slip parameters. It is also noted that both temperature profiles increase for higher hydrodynamic interaction and viscous dissipation parameters. The envisioned model is authenticated when compared with an already published result in a limiting case.

Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


Author(s):  
Umair Manzoor ◽  
Muhammad Imran ◽  
Taseer Muhammad ◽  
Hassan Waqas ◽  
Metib Alghamdi

2019 ◽  
Vol 30 (3) ◽  
pp. 1345-1364 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin ◽  
Norfifah Bachok ◽  
Ioan Pop

Purpose The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB. Findings It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable. Practical implications This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist. Originality/value The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 170 ◽  
Author(s):  
Liaqat Ali ◽  
Xiaomin Liu ◽  
Bagh Ali ◽  
Saima Mujeed ◽  
Sohaib Abdal ◽  
...  

This article explores the impact of a magnetic dipole on the heat transfer phenomena of different nano-particles Fe (ferromagnetic) and Fe3O4 (Ferrimagnetic) dispersed in a base fluid ( 60 % water + 40 % ethylene glycol) on micro-polar fluid flow over a stretching sheet. A magnetic dipole in the presence of the ferrities of nano-particles plays an important role in controlling the thermal and momentum boundary layers. The use of magnetic nano-particles is to control the flow and heat transfer process through an external magnetic field. The governing system of partial differential equations is transformed into a system of coupled nonlinear ordinary differential equations by using appropriate similarity variables, and the transformed equations are then solved numerically by using a variational finite element method. The impact of different physical parameters on the velocity, the temperature, the Nusselt number, and the skin friction coefficient is shown. The velocity profile decreases in the order Fe (ferromagnetic fluid) and Fe3O4 (ferrimagnetic fluid). Furthermore, it was observed that the Nusselt number is decreasing with the increasing values of boundary parameter ( δ ) , while there is controversy with respect to the increasing values of radiation parameter ( N ) . Additionally, it was observed that the ferromagnetic case gained maximum thermal conductivity, as compared to ferrimagnetic case. In the end, the convergence of the finite element solution was observed; the calculations were found by reducing the mesh size.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Amin Jafarimoghaddam ◽  
Ioan Pop

Purpose The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous wall submerged in hybrid nanofluids. The involved boundary layers are of stream-wise type with stretching/shrinking process along the surface. Design/methodology/approach Using appropriate similarity variables the partial differential equations are reduced to ordinary (similarity) differential equations. The reduced system of equations is solved analytically (by high-order perturbed field propagation for small to moderate stretching/shrinking parameter and low-order perturbation for large stretching/shrinking parameter) and numerically using the function bvp4c from MATLAB for different values of the governing parameters. Findings It was found that the basic similarity equations admit dual (upper and lower branch) solutions for both stretching/shrinking surfaces. Moreover, performing a linear stability analysis, it was confirmed that the upper branch solution is realistic (physically realizable), while the lower branch solution is not physically realizable in practice. These dual solutions will be studied in the present paper. Originality/value The authors believe that all numerical results are new and original and have not been published before for the present problem.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 784 ◽  
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

The hybrid nanofluid under the influence of magnetohydrodynamics (MHD) is a new interest in the industrial sector due to its applications, such as in solar water heating and scraped surface heat exchangers. Thus, the present study accentuates the analysis of an unsteady three-dimensional MHD non-axisymmetric Homann stagnation point flow of a hybrid Al2O3-Cu/H2O nanofluid with stability analysis. By employing suitable similarity transformations, the governing mathematical model in the form of the partial differential equations are simplified into a system of ordinary differential equations. The simplified mathematical model is then solved numerically by the Matlab solver bvp4c function. This solving approach was proficient in generating more than one solution when good initial guesses were provided. The numerical results presented significant influences on the rate of heat transfer and fluid flow characteristics of a hybrid nanofluid. The rate of heat transfer and the trend of the skin friction coefficient improve with the increment of the nanoparticles’ concentration and the magnetic parameter; however, they deteriorate when the unsteadiness parameter increases. In contrast, the ratio of the escalation of the ambient fluid strain rate to the plate was able to adjourn the boundary layer separation. The dual solutions (first and second solutions) are obtainable when the surface of the sheet shrunk. A stability analysis is carried out to justify the stability of the dual solutions, and hence the first solution is seen as physically reliable and stable, while the second solution is unstable.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1649
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Unsteady stagnation point flow in hybrid nanofluid (Al2O3-Cu/H2O) past a convectively heated stretching/shrinking sheet is examined. Apart from the conventional surface of the no-slip condition, the velocity slip condition is considered in this study. By incorporating verified similarity transformations, the differential equations together with their partial derivatives are changed into ordinary differential equations. Throughout the MATLAB operating system, the simplified mathematical model is clarified by employing the bvp4c procedure. The above-proposed approach is capable of producing non-uniqueness solutions when adequate initial assumptions are provided. The findings revealed that the skin friction coefficient intensifies in conjunction with the local Nusselt number by adding up the nanoparticles volume fraction. The occurrence of velocity slip at the boundary reduces the coefficient of skin friction; however, an upward trend is exemplified in the rate of heat transfer. The results also signified that, unlike the parameter of velocity slip, the increment in the unsteady parameter conclusively increases the coefficient of skin friction, and an upsurge attribution in the heat transfer rate is observed resulting from the increment of Biot number. The findings are evidenced to have dual solutions, which inevitably contribute to stability analysis, hence validating the feasibility of the first solution.


2021 ◽  
Vol 50 (12) ◽  
pp. 3753-3764
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Theoretical investigations of unsteady boundary layer flow gain interest due to its relatability to practical settings. Thus, this study proposes a unique mathematical model of the unsteady flow and heat transfer in hybrid nanofluid past a permeable shrinking slender cylinder. The suitable form of similarity transformations is adapted to simplify the complex partial differential equations into a solvable form of ordinary differential equations. A built-in bvp4c function in MATLAB software is exercised to elucidate the numerical analysis for certain concerning parameters, including the unsteadiness and curvature parameters. The bvp4c procedure is excellent in providing more than one solution once sufficient predictions are visible. The present analysis further observed dual solutions that exist in the system of equations. Notable findings showed that by increasing the nanoparticles volume fraction, the skin friction coefficient increases in accordance with the heat transfer rate. In contrast, the decline of the unsteadiness parameter demonstrates a downward trend toward the heat transfer performance.


2021 ◽  
Author(s):  
Zeeshan Khan ◽  
Ilyas Khan

Abstract The process of thin films is commonly utilized to improve the surface characteristics of materials. A thin film helps to improve the absorption, depreciation, flexibility, lighting, transport, and electromagnetic efficiency of a bulk material medium. Thin film treatment can be especially helpful in nanotechnology. As a result, the current study investigates the computational process of heat relocation analysis in a thin-film MHD flow embedded in hybrid nanoparticles, which combines the spherical copper and alumina dispersed in ethylene glycol as the conventional heat transfer Newtonian fluid model over a stretching sheet. Important elements such as thermophoresis and Brownian movement are used to explain the characteristics of heat and mass transfer analysis. Nonlinear higher differential equations (ODEs) were attained by transforming partial differential equations (PDEs) into governing equations when implementing the similarity transformation technique. The resulting nonlinear ODEs have been utilized by using the homotopy analysis method (MHD). The natures of the thin-film flow and heat transfer through the various values of the pertinent parameters: unsteadiness, nanoparticle volume fraction, thin-film thickness, magnetic interaction and intensity suction/injection are deliberated. The approximate consequences for flow rate and temperature distributions and physical quantities in terms of local skin friction and Nusselt number were obtained and analysed via graphs and tables. As a consequence, the suction has a more prodigious effect on the hybrid nanofluid than on the injection fluid for all the investigated parameters. It is worth acknowledging that the existence of the nanoparticles and MHD in the viscous hybrid nanofluid tends to enhance the temperature profile but decay the particle movement in the thin-film flow. It is perceived that the velocity and temperature fields decline with increasing unsteadiness, thin-film thickness and suction/injection parameters.


Sign in / Sign up

Export Citation Format

Share Document